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Abstract

Background. Methionine aminopeptidase 2 (MetAP2) is a bi-functional protein that plays a critical role in the
regulation of post-translational processing and protein synthesis.

Objectives. We studied whether MetAP2 is activated and expressed in human non-small-cell lung cancer (NSCLC)
tissues and whether inactivation of MetAP2 activity, with its specific inhibitor fumagillin, potentially inhibits pro-
liferation of NSCLC cells.

Material and Methods. The expression and function of MetAP2 were evaluated in NSCLC tissues, primary cell
cultures and cell lines using immunohistochemistry, RT-PCR, Western blot, aminopeptidase activity assay and
flow cytometry. MetAP2 expression was also studied in relation to clinicopathological factors.

Results. MetAP2 expression in NSCLS, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC),
showed a moderate to strong positive reaction while normal appearing bronchial epithelium showed weak stain-
ing and normal alveolar epithelial cells were widely negative. A high MetAP2 mRNA and protein expression was
found in NSCLC tissues. The aminopeptidase activity in NSCLC was 2-fold higher than that in normal lung tissues.
In a series of 41 ADC patients, MetAP2 expression was significantly correlated with patient’s outcome or survival
time. Inhibition of MetAP2 by fumagillin in SCC cell lines revealed a significant increase in caspase-3 activity as
compared to the control (p = 0.001).

Conclusions. Our results indicate that MetAP2 is involved in NSCLC and is an important regulator of proliferative
and apoptotic targets. Thus inhibition of MetAP2, such as by fumagillin, may be a potential therapeutic modality
for prevention of tumor cell growth, development and progression in NSCLC patients (Adv Clin Exp Med 2016,
25,1, 117-128).

Key words: apoptosis, methionine aminopeptidase 2 (MetAP2), myristoylation, fumagillin, non-small-cell lung
cancer (NSCLC).

Non-small-cell lung cancer (NSCLC) is one
of the most difficult malignancies to treat. Despite
years of research, the prognosis for patients with
lung cancer remains poor, with a five-year surviv-
al rate of 14%. Nevertheless, lung cancer may be
curable in its early stages and most patients de-
rive some benefit from treatment, such as longer
survival or amelioration of symptoms [1]. DNA
ploidy analysis may be efficient to estimate malig-
nant potential in lung ADCs [2]. Recently, clinical

application of molecular targeted therapy such as
epidermal growth factor receptor (EGFR) has im-
proved prognosis. Accordingly, the overall surviv-
al of patients with metastatic NSCLC evidencing
EGFR mutations has improved to 27-30.5 months
when treated with EGFR [3]. Therefore, molecular
targeted therapy for the appropriate population,
using good predictive markers, is indispensable.
The gene expression profile analysis of hu-
man esophageal cell carcinoma cell lines after early
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response to ionizing irradiation using cDNA mi-
croarray screening disclosed MetAP2 genes that
were modulated in irradiation [4]. The MetAP2
gene may be useful in understanding the molec-
ular basis of radiotherapy and in developing strat-
egies to augment its effect or establish novel, less
hazardous alternative adjuvant therapies. Over-
expression of MetAP2 in immortalized bronchi-
al epithelial cell line NL20 accelerated growth and
was reversed using treatment with MetAP2 inhibi-
tors. Thus MetAP2 plays an important role in tu-
mor cell growth and may contribute to tumorigen-
esis [5, 6].

Protein synthesis starts with an initiator me-
thionine in both prokaryotes and eukaryotes. The
translational process on ribosomes starts with
methionine. In order for the newly synthesized
protein to be transported to its exact intracellu-
lar location, the methionine at the NH2-termi-
nal is removed. After the removal of methionine
via MetAP, protein myristoylation takes place
by the enzyme N-myristoyl-transferase (NMT).
NMT is a cytosolic enzyme in eukaryotic cells [7].
The process is essential for further amino termi-
nal modifications (e.g. acetylation by N-a acet-
yltransferase and myristoylation of glycine by
N-myristoyl-transferase). The structural altera-
tions from these modifications are essential in cell
proliferation [8].

In eukaryotes, two isoforms of MetAP have
been identified as MetAP1 and MetAP2 [9]. Both
MetAP1 and MetAP2 are essential components of
the cell growth machinery. In yeasts and humans,
two proteins are known to possess MetAP2 activi-
ty and are known as MetAP1 and MetAP2. Down-
regulation of either MetAP1 or MetAP2 protein
expression by small interfering RNA (siRNA) sig-
nificantly inhibited the proliferation of human en-
dothelial cells [10].

MetAP2 has attracted much more attention
than MetAP1 due to the discovery of MetAP2
as a target molecule of the anti-angiogenic com-
pounds, fumagillin and ovalicin [11]. Identifica-
tion of MetAP2 as the cellular target of fumagillin
class molecules, and the significant growth inhibi-
tion observed in cells sensitive to MetAP2 inhibi-
tion suggested the direct involvement of MetAP2
in the regulation of cell proliferation [12, 13].

Targeting the angiogenesis process has become
an important strategy for inhibiting tumor growth.
Fumagillin and its derivatives have been known to
exert their inhibitory effects by specifically and co-
valently binding to MetAP2 [14, 15]. Inhibitors of
angiogenesis can be classified into 2 groups, specit-
ic and nonspecific factors. Non-specific inhibitors,
angiostatin, a tissue inhibitor of metalloprotein-
ases-2 (TIMP-2), and endostatin have attracted
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interest because of their strong antitumor effect.
Recently, much research has focused on TNP-470,
a synthetic analog of fumagillin, and its derivatives
(IDR-803, IDR-804, IDR-805, CKD-732) [16].

High expression of MetAP2 has been demon-
strated in breast, colorectal and cholangio-carcino-
ma [17-19]. Suppression of hepatoma growth and
angiogenesis by fumagillin has also been report-
ed [20]. As for NSCLC, moderate-to-high MetAP2
staining was identified only in lung carcinoma cell
lines not lung cancer tissues [5]. Here we demon-
strate the first description of increased MetAP ex-
pression in NSCLC tissues, primary cell cultures
from NSCLC and cell lines. Our findings strongly
suggest that the inhibition of MetAP2 by fumagil-
lin or its analogs may be a potential target for tu-
mor cell growth, development and progression in
NSCLC patients.

Material and Methods

Material

We investigated 41 cases of NSCLC histologi-
cally classified as ADC [21], ranging in age from
45 to 80 years (mean, 67 years). The age, gender,
tumor size, histological grading, nodal metastasis,
staging and patient outcome were evaluated by re-
viewing the medical and pathologic records. Tu-
mor size was evaluated using the greatest perpen-
dicular diameter of each lung lesion. In addition,
we studied surgical tissues from 8 cases of histolog-
ically classified primary NSCLC including 4 cas-
es of ADC and 4 cases of SCC in order to evaluate
MetAP2 aminopeptidase enzyme activity, mRNA
expression, immunohistochemical localization
and protein expression. Ten cases of normal lung
tissues freshly obtained from resected benign le-
sions served as control. The other tissue samples
were fixed in neutral-buffered formaldehyde and
processed for histological and immunohistochem-
ical evaluation. Furthermore, we studied cell cul-
tures from RERF-LC-AI (well differentiated) and
LC-1/sq (moderately differentiated) human SCC
cell lines for MetAP2 inhibition assay by a novel
inhibitor of MetAP2, fumagillin.

Methods

Cell Lines and Culture Condition

RERF-LC-AI (well differentiated) and LC-1/sq
(moderately differentiated) human SCC cell lines
were purchased from Riken BioResource Center
(Tsukuba, Japan). The tumor cells were cultured
in Dulbecco’s modified Eagle’s Medium (DMEM)
containing 10% fetal bovine serum, 100 IU/mL
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penicillin, 100 ug/mL streptomycin, and 0.25%
amphotericin B at 37°C in a humidified atmo-
sphere in a 5% CO, incubator. The cells were treat-
ed with trypsin (0.25%), harvested and processed
for secondary cultures in the same culture medium
until they reached 80% confluence.

In this study, tumor cells obtained at the low-
passage cultures (passages at 4-5) were used.

Preparation of Tissues

The tissue samples (mean weight, 300 mg)
were homogenized in 10 volumes of 0.01 mol/L
phosphate-buffered saline (PBS) pH 7.4 and son-
icated at 40 amplitudes for 2 min to obtain the
soluble fraction. After centrifugation at 4°C, the
supernatants were used to measure MetAP2 ami-
nopeptidase activity and proteins in triplicate. For
caspase-3 activity assay, primary cell cultures from
NSCLC and normal lung tissues were harvested by
centrifugation at 10,000 rpm for 5 min at 4°C and
counted. For each case, 1 x 10° cells re-suspended
in ice cold cell lysis buffer, and sonicated at 40 am-
plitudes for 30 s.

The cell lysates were centrifuged at 10,000 rpm
for 3 min, and the supernatants were transferred to
a microcentrifuge tube for caspase-3 activity assay.

MetAP2 Aminopeptidase

Activity Assay

MetAP2 aminopeptidase activity was deter-
mined by hydrolysis of methionine L-Leu-p-ni-
troanilide as a substrate, described elsewhere [22].
For MetAP2 activity, an assay mixture (500 uL)
containing 50 mM Tris-HClat pH 7.5 and 0.25 mM
methionine L-Leu-p-nitroanilide as a substrate
with an appropriate concentration of the enzyme
was used. The reaction mixtures were incubat-
ed at 37°C for 30 min, left for 15 min on ice, and
followed by spectrophotometric determination at
405 nm. The amount of aminopeptidase activity
that released one micromole of L-Leu-p-nitroan-
ilide per minute under assay conditions was de-
fined as one unit.

Semi-Quantitative RT-PCR Analysis
of MetAP2 mRNA Expression

The total RNA was extracted using an RNeasy
mini kit (Quiagen, Hilden, Germany), according
to the manufacturer’s instructions. Before cDNA
synthesis, the RNA was incubated with DNase
and then precipitation was done using 95% etha-
nol. The precipitated RNA was then electropho-
resed on 2.0% agarose-ethidium bromide (EtBr)
gels to verify the RNA quantity. Subsequently,
RNA concentration was determined by UV spec-
trophotometry. Total RNA (1.5 ug) was then re-
versely transcribed utilizing the specific primers.

The following PCR amplification was carried out
in a Thermal Cycler (Takara, Tokyo, Japan). In
each case, the PCR cycles were optimized to con-
firm amplification within the linear phase. For
each sample, the relative mRNA level was normal-
ized using glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH). The following primer pairs were
used: MetAP2 sense, ’ATGGCGGGTGTGGAG-
GAGGTAGCGGCCT-3 (nucleotides 135-162)
and anti-sense 5TTAATAGTCATCTC CTCT-
GCTGACAACT-3’ (nucleotides 1544-1571). The
expected PCR product for MetAP2 was 1440 bp.
The internal control was GAPDH. For quantifica-
tion of the PCR bands, we used densitometry with
Quantity One Software (Bio-Rad Labs, Hercules,
CA, USA) relative to GAPDH. The results were
considered as the mean + SE of three experiments.

Immunostainings for MetAP2

Primary cultures of RERF-LC-AI and LC-
-1/sq human SCC cell lines were stained using
an indirect immunofluorescence method. Cells
(2.5 x 104) in chamber slides (Nalge Nunc Int.,
Naperville, Illinois) were cultured overnight. Two
chamber slide sets from LSCC were prepared, one
of which received 1 ug/mL fumagillin (BIOMOL
Research Lab, Inc, USA) treatment. After 24 h cul-
ture, we fixed the cells in cold acetone, washed
in PBS, and treated for 30 min with 10% normal
horse serum to eliminate non-specific reaction.
The cells were treated with 1 : 50 dilution of poly-
clonal anti-human MetAP2 antibody overnight
followed by PBS washes and reaction with FITC-
-conjugated goat anti-rabbit IgG at 1 : 100 dilu-
tion. Immunoperoxidase reaction for metAP2 was
done using frozen or deparaffinized sections and
a streptavidin-biotin peroxidase complex meth-
od. In brief, endogenous peroxidase was blocked
by 10% normal goat serum and the sections were
reacted with 1 : 50 polyclonal rabbit anti-human
MetAP2 antibody (Zymed Lab Inc, CA) over-
night. After PBS washes, the sections were treated
with biotinylated goat anti-mouse or anti-rabbit
IgGs, washed and processed using a streptavidin-
biotin-peroxidase kit (Histofine, Nichirei, Japan).
The chromogenic reaction was with diaminoben-
zidine. Counterstaining was done with hematox-
ylin. For negative control, the primary antibody
was omitted or substituted with non-immune
rabbit serum.

MetAP2 Expression in Lung

Adenocarcinomas

We studied the relationships between MetAp2
expression and pathological and clinical features
(tumor grade, tumor stage, tumor size and nod-
al metastasis). MetAP2 staining was graded by the

_9_



120

H. SHiMIZU et al.

percentage of staining area of tumor cells as fol-
lows: 0: 0%, 1: 1~25%, 2: 26~50%, 3: 51~75% and
4: 76~100%. Staining intensity was graded 0: neg-
ative, 1: mild, 2: moderate and 3: strong staining.
The staining score (0 to 12) was estimated by mul-
tiplying the staining area 0 to 4 (%) by the stain-
ing intensity 0 to 3. We set the low expression of
MetAP2 intensity as a score of 0 to < 6 and high ex-
pression as a score of 6 to 12.

Western Blot Analysis

We extracted proteins from the primary cul-
tures of three cases each of adenocarcinoma and
SCC of the lung. Each protein sample (20 ug/lane)
was run on SDS gels, transferred onto Immobi-
lon polyvinylidene difluoride membranes (Bio-
Rad Lab, Hercules, CA, USA) in a transfer buf-
fer consisting of 0.02% SDS, 25 mM Tris-HCI, pH
8.3, 192 mM glycine, and 20% v/v methanol, then
incubated overnight at 4°C with a blocking buf-
ter (5% nonfat dry milk, 50 mM Tris-HCI, pH 7.5,
0.1% Tween-20, 150 mM NACI). Two sets of
membranes were made and incubated with 1 : 500
polyclonal rabbit anti-human MetAP2 antibodies
(Zymed Lab Inc, CA, USA) overnight at room tem-
perature. Proteins were extracted from the primary
cultures of three cases of ADC and SCC of the lung
and normal lung tissues. The samples were washed
with 50 mM Tris-HCI, pH 7.5, containing 150 mM
NaCI and 0.1% Tween 20 and then were treated
with corresponding secondary antibodies conju-
gated with alkaline phosphatase. The reaction was
developed with the ProtoBlot NBT and BICP Sys-
tem (Promega, Madison, WI, USA).

Caspase-3 Fluorometric Measurement

Caspases-3 production requires that the active
enzymes undergo folding from their large and small
subunit constituents after expressing separately in
Escherichia coli. The methodological details have
been described previously [23]. The active enzyme
was obtained under optimal conditions for each
enzyme; each subunit from the purified inclusion
bodies were solubilized in 6 M guanidine HCI and
subsequently diluted to a 100 pg/mL final concen-
tration at room temperature.

Measurement of the fluorescence counts in
the wells was done with a 400 nm excitation fil-
ter and 505 nm emission filter. The levels of re-
leased 7-amino-4-trifluoromethyl coumarin were
measured with a BioLumin 960 spectrofluorom-
eter (Molecular Dynamics Japan, Tokyo, Japan).
The specific activity of caspase-3 present was cal-
culated in each sample. The relative absorbance
was calculated as described according to the man-
ufacturer’s instructions (MBL, Co, LTD, Nagoya,

Japan).
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Flow Cytometric Assay

RERF-LC-AI and LC-1/sq human SCC cells
obtained from the low-passage cultures (passag-
es at 4-5) were utilized in this study. To measure
propidium iodide (PI) staining, lung cancer cells
(1 x 10*) were harvested and stained with FITC-
-labeled PI (Molecular Probes, Eugene, OR, USA)
as specified by the supplier. Briefly, cancer cells
(1 x 10%) in 1 mL of medium were cultured as in-
dicated for 21h, washed and then stained with PI-
FITC in a binding buffer and analyzed with Cel-
1Quest software (BD Bioscience, San Jose, CA,
USA) with FACSCalibur within 1 h. The data was
expressed as the mean of three experiments before
and after treatment.

Statistical Analysis

Statistical analyses for comparisons between
the clinicopathological findings were performed
using Fisher’s exact test and Kaplan-Meier sur-
vival analyses. The difference between two related
groups was examined for statistical significance us-
ing the Student’s t-test for paired data. A p < 0.05
was recorded as statistically significant.

Results

MetAP2 Expression in Normal
Lung and NSCLC Tissues

Immunoperoxidase staining for MetAP2 in
a paraffin section of normal alveolus showed neg-
ative staining (Fig. 1A). Sections from bronchi-
al epithelium showed a weak degree of staining
(Fig. 1B). ADC (well differentiated) and SCC cells
showed moderate to strong intensity (Fig. 1C, D).
The intensity of MetAP2 expression was greater in
carcinoma cells as compared to bronchial epithe-
lial tissues. SCC tissues showed stronger staining
than ADC tissues.

Pathological Features of Lung
Adenocarcinoma Patients and
Expression of MetAP2

We studied paraffin-embedded lung tissue sec-
tions of 41 cases of histologically classified ADCs.
The relationships between pathological and clini-
cal features are shown in Table 1. A comparison
between the low expression of MetAP2 intensity
and high expression of MetAP2 intensity in ADCs
showed that 21 cases had low expression and
20 cases had high expression of MetAP2. There was
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Fig. 1.
Immunohistochemical
analysis of human normal
lung and cancer tissues
(A-D, magnification x100).
MetAP2 in paraffin sec-
tion from normal alveolus
showed negative staining
(Fig. 1A). Bronchial epithe-
lium showed a weak degree
of staining (Fig. 1B, arrow).
ADC (well-differentiated)
and SCC cells showed
moderate to strong inten-
sity (Fig. 1C, D)

Table 1. Pathological features of lung adenocarcinoina patients and expression of MetAP2

Variables No. MetAP2 expression
low high p-value
Age
<70 24 13 11 0.756
> 70 17 8 9
Gender 15
male 30 6 15 1.000
female 11 5
Tumor size
<30 mm 16 9 7 0.751
> 30 mm 25 12 13
Tumor differentiation
w/d & m/d 28 14 14 1.000
p/d 13 7 6
Node metastasis
negative 27 16 11 0.197
positive 14 5 9
Pathological stage
stage | 28 14 10 0.350
stage IT & III 13 7 10
Patient outcome
alive 10 3 9 0.043
dead 31 18 11

*w/d & m/d - well differentiated & moderately-differentiated; ** p/d - poorly differentiated.

no significant association between the low and high staging), but patient outcome revealed a signifi-
expression of MetAP2 and clinical features (tumor cant difference between low and high MetAP2 ex-
size, tumor differentiation, nodal metastasis and pressing patients (Table 1; p < 0.04).

_11_
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MetAP2 Activities in Normal
Lung and NSCLC Tissues

Using methionine-p-nitroanilide as a sub-
strate, we measured the spectrophotometric de-
termination of the hydrolysis of methionine p-ni-
troanilide in their soluble and membrane-bound
forms in surgically removed lung carcinoma tis-
sues and normal lung tissues freshly obtained from
resected benign lesions, serving as the control. The
mean aminopeptidase activity was 80.6 + 13.4 in
normal lung tissue vs. 156.9 + 20.8 in lung car-
cinoma tissue. Compared to normal lung tissue,
carcinoma tissue had a remarkably higher activi-
ty (Table 2). In 4 cases of ADC, each case showed
a significantly higher aminopeptidase activity than
an unaffected normal tissue counterpart (Fig. 2A)
and overall, ADC cases had 2 times higher activ-
ity than normal tissue counterparts (97.3 = 16.51
vs. 45.4 + 8.6; p < 0.03, Fig. 2B). Likewise, 6 cas-
es of SCC tissues had 196.7 + 20.1 aminopeptidase
activity vs. 104.2 + 15.2 activity in unaffected adja-
cent normal lung tissues (Fig. 2C) with an overall
significant difference (p < 0.04; Fig. 2D).

A
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Table 2. Aminopeptidase activities in normal lung and
NSCLC* tissues

Case** | Age/Sex | Aminopeptidase activity (unit/L)
normal tumor

1 82/ M 29.311.8 733 £33
2 77| F 38.7+1.8 129.3 £5,2
3 65/F 69.7+ 1.5 122 £53
4 71/ M 43.7+2.0 64.7+3.2
5 77 1M 102.7+£ 5.5 115.7+ 5.8
6 64/ M 149.7 £ 2.6 174 £ 3.5
7 78 | M 50+ 1.7 247 £7.8
8 76 /| M 102 £ 3.6 226.7+ 9.5
9 60/ M 141 +3.8 182.3 + 4.6

10 74/ M 79.7 £2.0 2343+7.4

* NSCLC - non-small cell lung cancer; ** cases 1-4 - ade-
nocarcinoma and 5-10 - squamous cell carcinoma (SCC);
the data presented as mean + S.E.
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Fig. 2. Spectrophotometric determination of hydrolysis of methionine p-nitroanilide in their soluble and membrane-
bound forms in surgically-removed lung carcinoma tissues and unaffected adjacent surrounding tissues. Comparison
of the expression level of MetAP2 between 4 cases of ADC and 4 cases of normal lung tissues separately (A) and in
combination (B). Comparison of the expression level of MetAP2 between 6 cases of SCC and 6 cases of unaffected
adjacent normal lung tissues separately (C) and in combination (D)
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Semi-Quantitative RT-PCR
and Western Blot Analysis
of MetAP2 in Normal Lung
and NSCLC Tissues

To assess the mRNA expression levels of
MetAP2, we studied surgical operating tissues
from 7 cases of histologically classified prima-
ry NSCLC as 4 ADC and 3 SCC patients. Normal
lung tissues were obtained from surgically resect-
ed benign lesions.

The mRNA levels of MetAP2 in the four cases
of ADC were significantly different compared to
normal lung tissues (Fig. 3A; p < 0.008). Also, the
three cases of SCC had a significant upregulation
of the MetAP2 gene as compared to normal lung
tissues (Fig. 3B; p < 0.002).

Proteins were extracted from subconfluent
primary cultures of three representative cases of
ADC and SCC and normal lung tissue counter-
parts. The levels of MetAP2 in the three cases of

A Normal ADC
1 2 3 4 5 & 7

ol

ADC (Fig. 3C) and three cases of SCC (Fig. 3D)
showed a significant difference in the quantitative
measurement of the protein expression compared
to normal lung tissues (p < 0.05; respectively).

MetAp2 Immunofluorescence
Intensity, Caspase-3 Activity and
Cell Death Effect of Fumagillin
in Cultured SCC Cell Lines

We assessed the effect of fumagillin as an in-
hibitor of MetAP2 on cell proliferation activity and
cell death population using caspase-3 fluorometric
and PI (propidium iodide) flow cytometric analy-
sis. We used the primary cultures of RERF-LC-AI
(well differentiated) and LC-1/sq (moderately dif-
ferentiated) human SCC cell lines.

The immunofluorescence intensity of MetAP2
in moderately differentiated SCC cells was de-
creased after fumagillin (1 pg/mL) treatmentfor24h
(Fig. 4A). Also, caspase-3 activity was markedly
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Fig. 3. MetAP2 mRNA and protein expression in ADC and SCC. (A) The mRNA levels of MetAP2 by RT-PCR in

4 cases of ADC compared to 4 cases of normal lung tissues showed significant increase in ADC (p < 0.008). (B) The
protein levels of MetAP2 by Western blot in 3 cases of ADC compared to 3 cases of normal lung tissues showed signif-
icant increase in ADC (p < 0.05). (C) The mRNA levels of MetAP2 by RT-PCR in 3 cases of SCC compared to 3 cases
of normal lung tissues showed significant increase in SCC (p < 0.002). (D) The protein levels of MetAP2 by Western
blot in 3 cases of SCC compared to 3 cases of normal lung tissues showed significant increase in SCC (p < 0.05)
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Fig. 4. Inhibition of MetAP2 by addition of fumagillin in WDSCC and MDSCC cell cultures. (A)
Immunofluorescence staining of MetAP2 in untreated and treated (plus fumagillin, 1 pg/mL) MDSCC cell culture
showed decrease in fluorescence intensity in treated cells (magnification x200). (B) Caspase-3 fluorometric assay after
exposure of MDSCC cells to fumagillin. Both well-differentiated SCC and moderately-differentiated SCC cells showed
significantly increased caspase-3 activity. (C) Cell death effect using propidium iodide stain and flow cytometry on
MDSCC cells. Both WDSCC and MDSCC cells showed significantly increased cell death by propidium iodide staining

increased in fumagillin-treated well and moder-
ately differentiated SCC cells (Fig. 4B) (p < 0.028
and p < 0.001, respectively) compared to no-treat-
ment control SCC cells. In the moderately differ-
entiated SCC cells, caspase-3 activity was more
increased than in the no-treatment SCC control
cells (Fig. 4B). In addition, regarding cell death ef-
fect, the fumagillin-treated well and moderately
differentiated SCC cells showed significantly in-
creased cell death (Fig. 4C; p < 0.003 and p < 0.001,
respectively).

Discussion

Despite aggressive therapy, patients with ad-
vanced stage NSCLC demonstrate a poor surviv-
al with significant long-term morbidity in disease
survivors. High-risk disease features are strongly
correlated with tumor vascularity, suggesting that
angiogenesis inhibitors may be a useful addition to
current therapeutic strategies [24].

In the past, NSCLCs were seen together with-
out paying attention to the more specific molecular
pathological types. This was thought to be appro-
priate, because different therapeutic procedures
were not available for the treatment of the subtypes
of NSCLC such as ADC and squamous cell carci-
nomas. Since the time the first special EGFR muta-
tion was identified, the situation has changed and
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nowadays this rapidly evolving field provides new
results [25]. EGFR mutations have been reported
as a predictive factor for favorable prognosis of ge-
fitinib-treated patients with lung ADC. Patient’s
sex and smoking status were not significantly as-
sociated with longer overall survival and progres-
sion-free survival according to EGFR mutation
status [26]. Patients with advanced NSCLC who
were selected on the basis of EGFR mutations im-
proved progression-free survival with acceptable
toxicity but those with no EGFR mutation did not.

In all living cells, protein synthesis is initiat-
ed with either methionine (in the cytosol of eu-
karyotes) or formylmethionine. MetAP activi-
ty is essential for cellular growth and viability.
In yeasts, knockout of either MetAP1 or MetAP2
causes a decrease in growth rates while elimina-
tion of both genes is lethal, indicating that the two
MetAPs play essential functions and are together
essential for yeast proliferation [27, 28]. MetAP2
has attracted more attention than MetAP1 by the
discovery of MetAP2 as a target molecule of the
anti-angiogenic compounds, fumagillin and ovali-
cin [13]. A novel MetAP2 inhibitor, fumagillin,
strongly inhibits the growth of human colon can-
cer HT29 cells, melanoma B16F10 cells and neu-
roblastoma CHP-134 cells [29-31]. MetAP2 is the
molecular target of angiogenesis inhibitors, such as
fumagillin, which can also inhibit cancer cell pro-
liferation, implying that MetAP2 may play a quite
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complex role in tumor progression under which
MetAP2 enzyme activity is inactivated through co-
valent modification [32, 33].

Several studies have demonstrated that the
metastasis-associated gene product S100A4 inter-
acts with the angiogenesis-related protein MetAP2.
Other studies also support this conclusion [34].
Recently, small molecule protein p67/MetAP2 was
shown to have a greater affinity toward ERK1/2 ki-
nases, and its N-terminal p26 segment will mask
the phosphorylation sites on ERK1/2 to block the
activation and activity of ERK1/2. This will then
lead to inhibition of the cell cycle activated through
the growth factor-mediated cell signaling pathway
and thus cell growth and proliferation [35].

Major components of the cell signaling path-
ways, the ras/mitogen-activated protein kinase
(MAPK) systems are altered in lung cancer cells
by oncogenes through overexpression or muta-
tion, leading to dysregulated cell signaling and cell
proliferation [36]. It has been reported that NCI-
H-460 (large cell carcinoma), H1299, A549 (ADC)
and Calu6 (anaplastic carcinoma) cell lines cause
inhibition of tumor cell growth on three distinct
chemical classes of MetAP2 inhibitors as follows:
TNP-470, A800141, and A-357300.

This data prompted us to examine the possi-
ble new treatment roles of MetAP2 in lung can-
cers. There was no significant association of low
and high expression of MetAP2 and clinical fea-
tures (tumor size, tumor cell differentiation, nod-
al metastasis and staging) (Table 1). But medi-
an survival time of the low and high expression
of MetAP2 disclosed a significant difference
(Table 1, p = 0.043). Survival rate was more in-
creased in low MetAP2 expression patients (85.7%)
than high MetAP2 expression patients (55%).
MetAP2 may play quite a complex role in tumor
progression, which inactivates MetAP2 enzyme
activity through covalent modification [32, 33].

Additionally, we measured the spectrophoto-
metric determination of the hydrolysis of methi-
onine p-nitroanilide in their soluble and mem-
brane-bound forms in surgically removed lung
carcinoma tissues and unaffected adjacent normal
surrounding tissues. Total average aminopeptidase
activity was 80.6 * 13.4 in normal lung tissue ver-
sus 156.9 + 20.8 in lung carcinoma tissue (Table 2).
Compared to normal lung tissue, carcinoma tissue
had significantly higher activities. Histologically,
SCC demonstrated higher MetAP2 activity than
ADC. These results were further confirmed by the
semi-quantitative RT-PCR analysis of MetAP2
mRNA expression in normal lung and NSCLC
tissues. The mRNA levels of MetAP2 in four cas-
es of ADC showed significant differences in the
quantitative extent of MetAp2 gene expression as

compared to normal lung tissues (p = 0.008). Also,
three cases of squamous cell carcinomas had sig-
nificant upregulation of the MetAP2 gene as com-
pared to normal lung tissues (p = 0.002). In seven
cases of NSCLC, MetAP2 mRNA expression levels
were upregulated as compared to normal lung tis-
sues (p = 0.001) (data not shown). Also, the levels
of MetAP2 in three cases of ADC and three cas-
es of squamous cell carcinomas showed signifi-
cant differences in the quantitative extent of pro-
tein expression compared to normal lung tissues
(p = 0.05, respectively). MetAP2 proteins were in-
creased in ADC and SCC cases compared to nor-
mal lung tissues, according to Western blot anal-
ysis. Higher expression of the MetAP2 protein in
human cancers further supports the contention
that MetAP2 plays a role in cancer development.
We saw moderate-to-strong staining of MetAP2
in all ADC cases examined [37]. S100a4 protein is
a calcium-binding agent that regulates tumor me-
tastasis and a variety of cellular processes via in-
teraction with different target proteins, including
MetAP2, a main regulator of the proliferative and
apoptotic pathways in mesothelioma cells [33, 34].

Interestingly, the normal bronchial epitheli-
um showed a weak degree of staining; therefore,
the frequent MetAP2 expression in NSCLC seems
to be categorized as an aberrant expression. This
finding correlates to the finding that colorectal
normal mucosa far from the cancer shows a mild
degree of MetAP2 staining [11].

The frequent and aberrant MetAP2 expres-
sions in biliary epithelial cells might have ac-
quired MetAP2 through their dysplasia-carcinoma
sequence. Positive MetAP2 expression was ob-
served in a small population of non-dysplastic bili-
ary epithelial cells. Thus, it has been reported that
MetAP2 is a novel biomarker for the early detec-
tion of cholangiocarcinoma [19].

In the present study, we asked whether MetAP2
is activated and expressed in human NSCLC tis-
sues or inactivation of MetAP2 activity with fuma-
gillin (an angiogenesis inhibitor) may potentially
inhibit proliferation of lung cancer cell lines.

The expression level of MetAP2 was signifi-
cantly higher in the 6 cases of SCC than 4 cases of
ADC. Also, semi-quantitative MetAP2 mRNA and
protein levels showed higher expression in SCC
than in ADC. Thus, we chose the SCC cell lines
to assess the effect of fumagillin as an angiogen-
esis inhibitor on cell proliferation activity and cell
death population using caspase-3 flow cytomet-
ric analysis. The immunofluorescence intensity of
MetAp2 in the moderately differentiated SCC cell
line was decreased after treatment with fumagillin
for 24 h (Fig. 4A) and caspase-3 activity was mark-
edly increased (Fig. 4B; p = 0.001) as compared to
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well-differentiated SCC cells (Fig. 4B; p = 0.028).
In addition, the cell death effect was also increased
in fumagillin-treated moderately differentiated SCC
cells (Fig. 4C; p = 0.001) as compared to well-dif-
ferentiated SCC cells (Fig. 4C; p = 0.003). These
results indicate that fumagillin as an angiogenesis
inhibitor has potentially inhibited lung cancer cell
proliferation.

The mechanism by which inhibition of MetAP2
might lead to growth inhibition may be through
both tumor cell intrinsic and extrinsic mecha-
nisms. A defect in the removal of N-terminal me-
thionine caused by metAP2 inhibition might lead
to aberrant levels of proteins important for cell
proliferation and apoptosis [33]. In a mechanism
that remains to be completely elucidated, inhibi-
tion of MetAP2 by small molecule inhibitors led
to the transcriptional activation of p53, which in
turn activates the expression of p21 that inhibits
cycline E/Cdk2, accounting for the cell cycle block-
ade by these inhibitors [38]. Fumagillin is likewise
a eukaryotic initiation factor 2-associated glyco-
protein, p67. Fumagillin increases the stability of
p67 and affinity to ERKs 1 and 2 and causes the
inhibition of the phosphorylation of ERKs 1 and 2
[38, 39]. MetAP2 inhibitors IDR-803, IDR-804,
IDR-805 and CDK-732, as well as fumagillin an-
alogs, strongly inhibit the growth of cancers in
a model of nude mouse xenograft. Inhibition of
angiogenesis is emerging as a promising strate-
gy for the treatment of cancer [41]. Choosing the
most appropriate time of day for TNP-470, a syn-
thetic analogue of fumagillin, administration will
aid in the treatment of tumors.

The transcription of MetAP2 mRNA is reg-
ulated by clock gene proteins of the mCLOCK:
mBMALIL heterodimer in sarcomal80-bearing
mice [42]. Interestingly, MetAP2 was expressed
in many cell types, including fibroblasts in idio-
pathic pulmonary fibrosis. In the bleomycin in-
duced acute lung injury in mice, fumagillin atten-
uated the deposition of collagen [43]. This finding
was further confirmed when it was found that PPI-
-2458, a member of the fumagillin class of irrevers-
ible MetAP2 inhibitors, potently inhibits the pro-
liferation of human fibroblast-like synoviocytes
derived from rheumatoid arthritis in the late G1
phase of the cell cycle [44]. Further, we report the
first study on MetAP2 expression and function in
NSCLC tissues and cell lines.

A high MetAP2 mRNA and protein expres-
sion as well as activity was found in NSCLC tissues
and cell lines and the expression of MetAP2 cor-
related with patient’s outcome. The higher con-
centration of MetAP2 in NSCLC tissues than the
corresponding normal bronchial epithelial cells
suggests a greater dependence on this enzyme by
malignant cells for their function and prolifer-
ation. Hence, a reduction in the enzyme activity
may be more harmful to cancer cells than normal
epithelial cells. The evaluation of specific inhibi-
tors of MetAP2 in animal models should provide
justification for future selection and evaluation of
MetAP2 inhibitors in clinical trials for NSCLC pa-
tients. MetAP2 is an important regulator of prolif-
erative and apoptotic pathways and its inhibition
may provide a potential therapeutic intervention
for lung cancer.
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© We previously showed that H, acts as a novel antioxidant to protect cells against oxidative stress.

. Subsequently, numerous studies have indicated the potential applications of H, in therapeutic and
preventive medicine. Moreover, H, reqgulates various signal transduction pathways and the expression
of many genes. However, the primary targets of H, in the signal transduction pathways are unknown.
Here, we attempted to determine how H, regulates gene expression. In a pure chemical system, H,
gas (approximately 1%, v/v) suppressed the autoxidation of linoleic acid that proceeds by a free radical
chain reaction, and pure 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine (PAPC), one of the
major phospholipids, was autoxidized in the presence or absence of H,. H, modified the chemical

. production of the autoxidized phospholipid species in the cell-free system. Exposure of cultured cells to

. the H,-dependently autoxidized phospholipid species reduced Ca%* signal transduction and mediated

: the expression of various genes as revealed by comprehensive microarray analysis. In the cultured

. cells, H, suppressed free radical chain reaction-dependent peroxidation and recovered the increased
cellular Ca?*, resulting in the regulation of Ca?*-dependent gene expression. Thus, H, might regulate
gene expression via the Ca%* signal transduction pathway by modifying the free radical-dependent
generation of oxidized phospholipid mediators.

Molecular hydrogen (H,) was originally thought to behave as an inert gas in mammalian cells; however, our
previous studies showed that this is not always the case!, demonstrating that H, neutralizes the hydroxyl radical
(-OH) and peroxynitrite (ONOO") inside cells and acts as a novel antioxidant to protect the cells against oxida-
tive stress'. Inhalation of 1%-4% (v/v) H, gas is effective for the treatment of ischemia/reperfusion injuries’*.
Recently, inhalation of 1.3% H, gas from a premixed gas was shown to protect neurons in a cardiac arrest model®.
However, the mechanism of how such a low concentration of H, exerts the positive effects is not known.

Numerous studies have strongly suggested that H, has the potential for a variety of therapeutic and preventive
applications®’. In addition to extensive animal experiments, more than 10 clinical studies examining the efficacy
of H, have been reported®’, including double-blinded clinical studies in patients with Parkinson’s disease and
rheumatism®°. Based on these studies, the field of hydrogen medicine is rapidly growing.

Subsequently, H, was shown to exhibit multiple functions, including anti-inflammatory, anti-apoptotic,
anti-allergic, and antioxidant activities, as well as regulation of differentiation and energy metabolism®’. To exert
multiple functions in addition to anti-oxidative roles, H, regulates various signal transduction pathways and
the expression of many genes®’. For examples, H, protects neural cells and stimulates energy metabolism by
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Figure 1. Solubility of H, in fatty acids in the presence of an aqueous solvent. H,-saturated phosphate-
buffered saline (PBS) was mixed with the same volume (75 mL) of saturated fatty acid (octanoic acid) (a) or
unsaturated fatty acid (linolenic acid) (b) and maintained for 16 h in a closed aluminum bag as described
in Methods. The same volume (3 mL) of each phase was transferred to each open tube (¢ 13 mm), followed
by measurement of H, at the indicated time (n= 4). The experiments were performed at 25°C. **P < 0.001
vs. PBS. (a,b) Significance was calculated using an unpaired two-tailed Student’s t-test. (c) Time courses of
retention times of H, in each phase in the open vessels. **P < 0.01, vs. octanoic acid (n=4).

stimulating the hormonal expression of ghrelin'® and fibroblast growth factor 21 (FGF21)", respectively. In con-
trast, H, relieves inflammation by decreasing pro-inflammatory cytokines'2. However, it is difficult to explain the
molecular mechanisms by which H, exerts these functions by conventional concepts alone. To understand the
molecular mechanisms by which H, exerts these multiple functions, it is essential to identify the primary targets
of H, that modulate signal transduction and gene expression.

Therefore, in this study, we aimed to elucidate one of the molecular mechanisms by which H, mediates signal
transduction and gene expression. Our results suggested that low concentrations of H, modulated Ca*" signal
transduction and regulated gene expression by modifying the production of oxidized phospholipid species.

Results

H, accumulated in the lipid phases. To understand the difference between intracellular conditions and
aqueous solutions, we focused on the lipid phases to determine the intracellular localization of H, accumulation
at room temperature. H, incorporation was two- or three-fold higher in the liquid fatty acid phases than in the
aqueous phase in the presence of both water and fatty acids, and was retained longer in the fatty acid phases than
in the aqueous phase in open vessels (Fig. 1a,b). In particular, H, seemed to be retained significantly longer in
the unsaturated fatty acid (linolenic acid) than in the saturated fatty acids (octanoic acid) (Fig. 1c), although this
difference in retention time might be attributed to the difference in the number of carbons. Since unsaturated
fatty acids are the primary targets for initiating a free radical chain reaction, we assumed that H, could efficiently
suppress this reaction in biomembranes, even at low concentrations.

Autoxidation of unsaturated fatty acids was suppressed by low concentrations of H,
gas. Autoxidation of unsaturated fatty acids proceeds by a free radical chain reaction in air'>. Thus, we meas-
ured autoxidation of a filmy di-unsaturated fatty acid (linoleic acid: R-CH= CH-CH,-CH = C-R)) at 37°C for
20h in the dark in the presence of various concentrations of H, gas. A conjugated diene, which should be formed
by autoxidation, was estimated by the absorption at 234 nm (Fig. 2a). The absorption at 234 nm was increased
depending on the formation of the conjugated diene [R-CH = CH-CH = CH-CH(-OOH)-R’ or R-CH(-OOH)-
CH = CH-CH = CH-R’] accompanied by peroxidation in a pure chemical system (H,, O,, and N, were supplied
from gas cylinders) (Fig. 2b). O, was essential for autoxidation (Fig. 2c). As a result, even only approximately 1%
H, gas significantly suppressed autoxidation of linoleic acid at 37°C, even in the absence of any catalysts in the
dark in a pure chemical system (Fig. 2¢).

Ca?* signal transduction by H,-dependent chemical oxidation of phospholipids.  Phospholipids
are converted into oxidized mediators that modulate various signal transduction pathways by not only enzymatic
reactions, but also by chemical oxidation'*'*. Oxidized phospholipids, including 1-palmitoyl-2-(5-oxovaleroyl)
-sn-glycero-3-phosphocholine (POVPC) and 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC),
are present in oxidatively modified low-density lipoproteins (oxLDLs) and have been found in atherosclerotic
lesions'®. These compounds are important as inducers of different cellular responses, including inflammation,
proliferation, and cell death. Moreover, autoxidation of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine
(PAPC) leads to the chemical production of various bioactive phospholipid species, such as POVPC, PGPC,
1-palmitoyl-2-(5-hydroxy-8-oxooct-6-enoyl)-sn-glycero-3-phosphocholine (HOOA-PC), and 5-hydroxy-8-oxo-
6-octenedioic acid (HOdiA-PC)'*!>,

We assumed that low concentrations of H, would influence some chemical reactions leading to the production
of putative oxidized lipid mediators for the modulation of signal transduction. Because PAPC is one of the major
phospholipids in mammalian biomembranes, the role of H, in the chemical production of oxidized phospholipid
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Figure 2. Suppression of autoxidation of linoleic acid-film by H, gas. (a) Profile of ultraviolet absorption of
9-hydroxyoctadecadienoic acid; CH;(CH,),-CH = CH-CH = CH-CH(-OH)-(CH,),-COOH) (9-HODE) in
cyclohexane, shown as a standard conjugated diene. (b) Linoleic acid-film was autoxidized at 37 °C for 20h in a
glass tube placed in a closed aluminum bag in the presence of various concentrations of H, and O, as described
in Methods. Representative profiles of ultraviolet absorption of the cyclohexane solution of H,-dependent
autoxidized linoleic acid are shown. (¢) Linoleic acids autoxidized with various concentrations of H, were
evaluated by measuring absorption at 234 nm. *P=0.034 (0.3% H,), #P = 0.069 (1% H,), **P < 0.01 (3% H,,
10% H,), and ***P < 0.001 (80% H,) vs. 0% H, (n=15).

mediators was determined by conducting autoxidation of pure PAPC (resulting in OxPAPC) in the absence of
any catalysts in the dark. The peroxidation of PAPC in air was confirmed by an increase in the signal for the
fluorescent dye specific to lipid peroxides, Liperfluo (Fig. 3a). A previous study indicated that OxPAPC activates
transcription factors involved in Ca®* signaling'®. Indeed, when THP-1 cells (a human monocytic cell line derived
from a patient with acute monocytic leukemia) were exposed to OxPAPC, a transient increase in cellular Ca*"
was observed when a Ca?*-sensitive fluorescent dye, Fluo4-AM was used (Fig. 3b). This Ca’" signaling depended
on OxPAPC in an oxidation time-dependent manner (Fig. 3¢).

Next, the H,-dependent production of OxPAPC, which leads to the activation of Ca?" signaling, was investi-
gated by autoxidizing PAPC for 3 days at 25°C in air at various concentrations of H, (designated as H,OxPAPC,
and the notation of H,[x%]OxPAPC was used when autoxidized in the presence of x% H,). H, suppressed
the generation of total peroxides as revealed by Liperfluro fluorescence intensity (Fig. 3d). Ca?" signaling was
observed when PAPC was autoxidized with less than 0.3% H,, whereas more than 1.3% H, significantly disrupted
this signaling (Fig. 3e).

In order to investigate the molecule(s) influenced by H,, we analyzed H,OxPAPCs by using mass spectrom-
etry on autoxidation day 3. In all, 209 bands were detected, with molecular masses ranging from 126.3754 to
991.6494 Da; this was consistent with the findings of a previous report!® (Supplementary Fig. 1). The differences
in the production of H,OxPAPC and OxPAPC species were presented using a heat map (Supplementary Fig. 1i).
The levels of many bands were increased or decreased with differences in concentrations of H,. For examples
as the relatively increased species, the levels of the Ca?* signaling inducers POVPC'¢, HOOA-PC, HOdiA-PC,
and hydroxyeicosatetraenoic acid-3-phosphocholine (HETE-PC)'” were slightly increased in response to H,
(Supplementary Fig. 1i).

Because the reduced form of POVPC was reported to function as an antagonist'3, it is possible that increased
levels of the reduced form(s) of some OxPAPC species, rather than the decreased levels of putative agonists (such
as POVPC), might have disrupted Ca®" signaling as a putative antagonist(s). Further studies are warranted to
identify the H,-dependent bioactive mediator(s).

Comprehensive analysis of H,-dependent regulation of gene expression. Next, we investigated
how H,0xPAPC influences gene expression. PAPC was autoxidized in the absence or presence of various concen-
trations of H, for 3 days and then administered to cultured THP-1 cells. In a preliminary experiment, the change
in the expression level of tumor necrosis factor (TNF)-a gene in response to OxPAPC from that to H,OxPAPC
peaked at 4h. Thus, by using microarray analysis, we comprehensively analyzed the change in gene expression
in response to the H,-dependent mediators at 4 h in three samples under each condition. In all, 86 genes were
selected according to the following criteria as described in the legend of Fig. 4a: a significant increase in OxPAPC
(vs. PAPC), and a significant decrease in H,[1.3%]OxPAPC and H,[5%]OxPAPC (vs. OxPAPC) (Supplementary
Table 1). The gene expression profile was presented in a heat map (Fig. 4a). The selected genes were validated by
semi-quantitative real-time polymerase chain reaction (RT-PCR), and marginal changes in the expression levels
of some genes were confirmed (Supplementary Fig. 2).

In addition, the regulatory expression of TNF-a and IL-8 by H,OxPAPC was investigated using THP-1 and a
different cell type (human aortic endothelial cells: HAEC), respectively (Fig. 4b,c).

According to the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database (http://www.
genome.jp/kegg/pathway.html), the functions of 7,143 genes were identified and classified (Fig. 4d, upper). We
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Figure 3. PAPC autoxidized with H, modulated Ca** signaling. (a) Chemically pure PAPC was autoxidized
in air with 100% humidity at 25 °C in a closed aluminum bag for the indicated periods, and time-dependent
production of peroxides in air from chemically pure PAPC was estimated using Liperfluo fluorescence, where
wavelengths of excitation and emission were set at 488 and 535 nm, respectively, as described in Methods. (b)
Representative responses in THP-1 by OxPAPC with the fluorescent Ca?' indicator Fluo4-AM are shown as
described in Methods. The arrow and arrowhead indicate the addition of OxPAPC and ATP, respectively. ATP
(aligand of the Ca** channel P2X7) was used as a positive control. (¢) PAPC was autoxidized for the indicated
periods at 25 °C, and subjected to the Ca**-signaling assay in THP-1 cells. The OxPAPC-induced Ca®* response
depended on autoxidizing period of OxPAPC. (d) PAPC was autoxidized in air for 3 days in the absence or
presence of the indicated concentrations of H, (H,OxPAPC), and the peroxide of OxPAPC or H,OxPAPC was
estimated using Liperfluo as described in (a) (n=3-6). *P=0.044, **P < 0.01. (e) PAPC was autoxidized in air
for 3 days with the indicated concentrations of H, (H,0xPAPC) and then subjected to Ca*" signaling assays as
described in Methods (1= 6). *P=0.021 (1.3%H,), *P=0.022 (5% H,), and *P = 0.030 (80% H,) vs. no H,.

classified the 86 selected genes (Fig. 4e, lower). Of these 86 genes, 46.5% belonged to those involved in signaling
pathways (Fig. 4d, upper), whereas 25.8% of the total number of 7,143 genes is involved in signaling pathways
(Fig. 4d, lower). Genes encoding factors involved in signal transduction and transcription factors are indicated by
blue and black, respectively, on the right in the heat map (Fig. 4a).

Among the genes involved in signaling pathways, the proportion of those belonging to Ca®" signaling were
lower in the selected genes than in those in the entire genome, indicating that H, regulates fewer components
of the Ca?" signaling pathways (Fig. 4e, lower). This was consistent with the finding that H,OxPAPC decreased
Ca?" signaling. In contrast, the proportion of genes belonging to the mitogen-activate protein kinase (MAPK)
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Figure 4. Changes in gene expression regulated by H,OxPAPC. (a) Three samples of PAPC, OxPAPC, and
H,OxPAPC were exposed to THP-1 cells for 4h , and the gene expression was comprehensively analyzed using
microarray. Eighty-six genes were selected according to the following criteria; genes up-regulated by OxPAPC
(more than 2.5-fold, vs. PAPC) and those down-regulated by H,[1.3%]OxPAPC and H,[5%]OxPAPC (less
than 0.75-fold and 0.5-fold, respectively, vs. OxPAPC) are shown in a heat map (red and green indicate the up-
regulation vs. PAPC treatment, and the down-regulation vs. OxPAPC treatment, respectively, as shown in the
color gradient). Possible target genes of NFAT and CREB are marked with red on the right. Genes encoding
factors involved in signal transduction and transcription are indicated by blue and black, respectively, on the
right. The release of TNF-a (b) (from THP-1) and IL-8 (c) (from HAEC) was investigated using ELISA as
described in Methods. (d, upper) Ratio of genes belonging to each category for a total of 7,142 genes identified
by the KEGG database. (d, lower) Ratio of genes belonging to each category in the 86 selected genes listed in

a. (e, upper) Ratio of genes belonging to each signaling pathway identified by the whole KEGG database. (c,
lower) Ratio of genes belonging to each signaling pathway in the selected genes listed in (a). (f) The H,OxPAPC-
dependent expression of genes transcribed by CREB and NFAT. Transcription factors are indicated in yellow.
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signaling was higher (Fig. 4e, lower), indicating that H, regulates more components of MAPK signal transduction
pathways (Fig. 4e, lower).

The signal transduction pathways that were regulated by H, are shown in Supplementary Table 1 according
to the KEGG Pathway Database. These data suggested the possibility that low concentrations of H, contribute to
various signal transduction pathways via oxidized phospholipid species.

cAMP response element binding protein (CREB)-target genes were selected according to the CREB Target
Gene Database (http://natural.salk.edu/CREB/), and nuclear factor of activated T cells (NFAT) target genes were
selected by referring to Medline, as shown in Supplementary Table 1. The target genes of CREB and NFAT are
marked by red on the right in the heat map panel as NFAT or CREB (Fig. 4a). A considerable number of the
selected genes were targets of CREB or NFAT (Fig. 4f). These data are consistent with the findings of previous
studies showing the Ca?"-dependent regulation by these transcription factors: CREB is activated via phosphoryl-
ation by a calmodulin-dependent kinase (CaMK)'? in a Ca?"-dependent manner, and NFAT is dephosphorylated
by calcineurin (CN) in a Ca*"-dependent manner, translocates to the nucleus, and then functions as a transcrip-
tion factor with its partner proteins, e.g., activator protein 1 (AP-1), CREB, or nuclear factor-kappa B (NF-xB)%.
Indeed, exposure of THP-1 to OxPAPC, but not to H,OxPAPC, stimulated the nuclear translocation of NFAT
(Supplementary Fig. 3).

Thus, H,-dependent oxidized mediators or putative antagonists could be associated with transcriptional reg-
ulation via Ca®* signaling.

Free radical inducers contributed to the NFAT pathway in cultured cells.  Autoxidation of unsatu-
rated fatty acids, including PAPC, proceeds by a free radical chain reaction'®, and-OH is the primary trigger for
this reaction'**"?2, We previously showed that H, reduces -OH levels inside cultured cells by using the spin trap-
ping method and a specific fluorescent indicator’. Thus, in this study, we investigated the effects of H, on the lipid
free radical chain reaction by using cultured cells. To initiate a free radical chain reaction inside the cells, we used
2,2’ -azobis(2-methylpropionamidine)dihydrochloride (AAPH)*, which is not affected by H, (Supplementary
Fig. 4) and is suitable for the slow generation of free radicals by a spontaneous chemical reaction. The lipid free
radical chain reaction results in the production of lipid peroxides (LPOs)*"?*, which can be detected using the flu-
orescent dye Liperfluo®. Thus, we exposed cultured THP-1 cells to AAPH and estimated LPO production based
on the Liperfluo signal. The Liperfluo signal significantly decreased in the presence of low levels of H, gas (e.g.,
1.3%; Fig. 5a,b). Thus, even at such low concentrations, H, has the potential to reduce the generation of LPOs by
suppressing the initiation and/or propagation of free radical chain reactions in cultured cells.

Next, we determined whether the responses induced by chemically produced H,OxPAPC (Figs 3 and 4) could
simulate the effects induced by the free radicals in cultured cells. When THP-1 cells were exposed to AAPH, the
cellular Ca*" levels increased (Fig. 5¢) in a time-dependent manner (Fig. 5d), as shown by the analysis of Fluo-3,
and the Ca?* signaling was suppressed by H, (Fig. 5¢,e). NFAT was also activated, as shown by the translocation
of NFAT into the nucleus (Fig. 5f,g), and the nuclear translocation of NFAT were recovered by H, (Fig. 5f,g).
Moreover, the free radical inducer stimulated the expression of some target genes of NFAT, including TNF-a,
early growth response protein 1 (EGRI), and activating transcription factor 3 (ATF3), which have been shown in
Supplementary Table 1, and H, decreased their expressions (Fig. 5h), suggesting that H, regulates these genes via
the NFAT pathway.

In contrast, AAPH-mediated activation of CREB was not observed (Supplementary Fig. 5) in this cultured cell
line, regardless of the stimulation of cellular Ca*". In particular, the expression of the CREB-target gene NFKB2
(NF-&B, subunit 2 gene) was not affected by AAPH (Fig. 5i), and the expression of HMOX1 (Heme Oxygenase 1
gene), a nuclear factor-E2-related factor 2 (Nrf2)-target, was slightly but not significantly increased by H, (Fig. 5i).
This result was consistent with those of a previous study®. Thus, the NFAT pathway could mainly contribute to
the H,-dependent transcriptional response induced by free radicals at least in THP-1 cells.

Taken together, these cellular responses, at least partly, are in agreement with those obtained using the in vitro
H,-dependent products of OxPAPC species (Figs 3, 4). Therefore, we proposed a model in which H, is linked to
the modulation of Ca”" signal transduction and the NFAT pathway via oxidized phospholipid species, as illus-
trated in Fig. 6.

Discussion

While the biological effects of H, have been evaluated in more than 300 animal studies and 10 clinical analyses
in humans®’, the molecular mechanisms by which H, at low concentrations exerts its multiple effects on signal
transduction remained unknown. Therefore, in this study, we aimed to examine how H, regulates signal trans-
duction pathways that mediate gene expression. Our results suggested that low concentrations of H, modulated
Ca?" signal transduction and regulated gene expression by modifying the production of oxidized phospholipid
species. Hence, these data provide important insights into one of the molecular mechanisms by which H, medi-
ates gene expression.

H, can be ingested via several methods. Drinking of H,-infused water (H,-water) has been shown to be effi-
cacious in the treatment of various diseases in animal models and humans®’; however, H, can be infused up to
only 0.8 mM under atmospheric pressure, and drinking saturated H,-water provides a blood concentration up
to only ~10 M, with a short dwelling time in the body'"*". Moreover, inhaling 1%-4% (v/v) H, gas was shown
to be effective, reaching concentrations of 8-32 .M H, in the blood"**. However, initiation of cellular signals by
these low concentrations of H, may be difficult to be explained because H, should be too inert to react with most
molecules. To activate H, for reaction with the other molecules, a sufficient level of a putative catalyst must be
present; however, it is unlikely that such a putative catalyst would be abundant inside cells. Moreover, H, is very
small and is unlikely to bind to a putative H,-binding receptor because its intra-molecular fluctuation would be
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Figure 5. H, suppressed free radical inducer-dependent fatty acid peroxidation and Ca’>* and NFAT
signaling. (a) THP-1 was exposed to a free radical inducer (10 mM AAPH) in the absence or presence of the
indicated concentrations of H, for 4.5 h. Representative flow cytometric profiles are shown to demonstrate lipid
peroxides with Liperfluo signals. (b) The Liperfluo signals were quantified. *P=0.015, ***P < 0.001 vs. 0% H,
(n=6). (c) THP-1 cells were treated with 10 mM AAPH for 3h in the presence of the indicated concentrations
of H,. Intracellular Fluo-3 fluorescence intensity was observed using a laser scanning confocal microscope.
Scale bar: 50 pm. (d) THP-1 cells were treated with 10 mM AAPH for the indicated periods in the absence of H,
and then time dependent increase in Ca’*-signal was monitored by intracellular Fluo-3 fluorescence intensity
as described in (c). (e) Fluo3-positive cells were semi-quantified after the treatment with 10 mM AAPH for 3h
in the absence or presence of the indicated concentrations of H,. **P < 0.01 vs. no H, (n= 3). (f) THP-1 was
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treated with 10mM AAPH for 3 h in the presence of the indicated concentrations of H,. The translocation of
NFAT into the nucleus was examined as described in Methods and shown by immunostaining in yellow. The
nucleus was counter-stained with Hoechst 33342 as shown in blue. Scale bar: 50 um. (g) The NFAT-expressing
areas were semi-quantified and shown by the ratio of NFAT in the nucleus with that in cytosol. *P=0.023 and
**P<0.01 vs. no H, (n=10). (h,i) The expressions of the NFAT-target genes (TNF-c, EGRI, and ATF3) (h) and
non-NFAT target gens (NFKB2 and HMOX1) (i) were estimated using RT-PCR coupled with a TagMan probe
(the probes are listed in Supplementary Table 2). The names of the genes are described in Supplementary Table
1.*P=0.015 (for ATF3) (+AAPH and +H, vs. + AAPH and -H,). #P= 0.14 (for HMOX1) (+AAPH and -H,
vs. +AAPH and + H,), and **P < 0.01 (n=3)

expected to lead to instability in terms of thermodynamics, as previously discussed?. Thus, it was unknown how
low concentrations of H, regulate signal transduction and gene expression.

Since increased oxidative stress involving -OH triggers free radical chain reactions, we assumed that the chem-
ically produced mediators derived from phospholipids could contribute to various pathogenic conditions. In the
present study, we verified that a small amount of H, (as low as 1.3%) affected free radical-dependent lipid perox-
idation, from which oxidized lipid mediators should be derived?.

Generally, H, hydrogenates unsaturated fatty acids at higher temperatures with a palladium catalyst. To the
best of our knowledge, no studies have examined autoxidation-dependent hydrogenation at approximately 1%
(v/v) H, gas at 37 °C without any catalysts. Although H, was thought to be inert in the absence of a catalyst at body
temperature, we demonstrated that approximately 1% (v/v) H, suppressed autoxidation of an unsaturated fatty
acid in a chemically pure system in this study; thus, our data provided insights into the biological activities of H,.

There are two possibilities: the effects of oxidized phospholipid species on Ca’* signaling may be explain by
decreased levels of a putative agonist that induces Ca?" signaling or by increased levels of a putative antagonist
that disturbs Ca>" signaling. Although we could not identify these species in this study; it is likely that H, modi-
fied the production of reduced forms of oxidized phospholipid species during free radical chain reactions by the
following previous findings: POVPC is a bioactive phospholipid-mediator that is produced by chemical oxidation
of PAPC, and the reduced form of POPVC has been shown to function as an antagonist for signal transduction®.
Thus, it is possible that during a lipid free radical chain reaction, H, contributes to the generation of a reduced
form(s) that function(s) as an antagonist(s). Therefore, we proposed a hypothetic model in which H, is linked to
the modulation of Ca®* signal transduction and the NFAT pathway via oxidized phospholipid species as illus-
trated in Fig. 6.

Previous studies have shown that 1%-4% was efficacious in inhaling H, gas in various animal experi-
ments"**??-*!_ Since a mixed gas containing 1.3% H,, 30% O, and 68.7% N, is available, the effects of around 1.3%
needed to be investigated in further studies, including clinical ones®. The effective concentrations of H, gas were
approximately consistent throughout this study (Figs 2-5).

No receptors involved in Ca*" signaling were identified in the present study; however, a previous study showed
that some chemically oxidized phospholipid mediators, such as 9-HODE and 11-HETE, could bind a G-protein
coupled receptor (G2A) to induce Ca*' signaling'”. Thus, putative oxidized phospholipid mediators or antago-
nists might bind to G-protein coupled receptors to modulate signal transduction.

In addition to the anti-oxidative roles of H,, it has shown to function as an immunosuppressant in allograft
transplantation®?. This immunosuppressant effect can be explained by the suppression of NFAT activation because
an immunosuppressant such as CsA and tacrolimus (FK506) acts through the inactivation of calcineurin. Since
pro-inflammatory cytokines are regulated by NFAT-dependent mechanisms®, the anti-inflammatory effects by
H, can be explained by the suppression of NFAT. Additionally, the anti-allergic effects of H, can be explained by
the decrease in Ca**/NFAT signaling®.

A considerable number of the multiple functions of H,, as shown by previous studies, might be explained by
the link between H, and NFAT because of the numerous multiple functions of NFAT?***, For example, decreased
expression of inducible nitric oxide synthase (iNOS) by H,* can be explained by the inactivation of NFAT?¢. The
suppression of osteoclast differentiation®” and improvement of hypertension®*** by H, could involve the NFAT
pathway**#!. Moreover, the decreased expression of gene products through an NFAT-dependent pathway might
be involved in a-synuclein-induced degeneration of midbrain dopaminergic neurons in Parkinson’s disease®2.
This NFAT-dependent pathway might explain the beneficial effects of H, in these patients®. Further studies are
needed to elucidate the mechanisms by which H, exerts multiple functions in terms of the involvement of the
NFAT pathway.

In summary, in this study, we investigated the link among H,, oxidized phospholipids, and Ca** signaling.
Further studies are warranted to identify the H,-dependent bioactive mediator(s). Our data provided important
insights into one of the mechanisms by which H, regulates signal transduction and gene expression; however,
H, might contribute to other types of signaling pathways as well because H, regulates many genes belonging
to various signaling pathways. A more detailed understanding of the molecular mechanisms of H,-dependent
signal transduction and gene expression is expected to facilitate the application of H, in a wide range of medical
applications.

Methods

Measurement of H,.  Gases containing H, were prepared by mixing H,, O,, N,, and CO, at various con-
centrations from each gas cylinder equipped with a flow meter. The H, concentration in the mixed gas or air was
tested in each experiment by using gas chromatography (Breath Gas Analyzer, Model TGA2000; TERAMECS
Co. Ltd., Kyoto, Japan) as described previously'. For the measurement of H, in the solvent, H, was transferred
to the air phase in a closed aluminum bag, and the concentration of H, measured by using gas chromatography
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Figure 6. A model of the proposed pathway. When free radical chain oxidation generates oxidized
phospholipid mediators, Ca?* signaling is induced, followed by the activation of calcineurin and subsequent
induction of the NFAT pathway. On the other hand, H, modifies the production of oxidized phospholipids by
modulating free radical chain reactions. The putative oxidized phospholipids appear to function as antagonists
and lead to a decline in Ca?" signaling.

as described previously'. The aluminum used in the bag was covered with a plastic film to avoid any influence of
aluminum.

Autoxidation of linoleic acid-film. Linoleic acid and (+)9-HODE were purchased from Nacalai Tesque
(Kyoto, Japan) and CAY (MI, USA), respectively. Linoleic acid was dissolved in cyclohexane to 16 mM, and 2pL
was dispensed into each glass tube (¢ 10 x 50 mm) that had been filled with argon gas; it was allowed to dry up
to form a linoleic acid-film at the bottom of a glass tube. The glass tubes were placed into a closed aluminum
bag, and the gas in the bag was completely replaced with the indicated mixed gas, where pure H,, O,, and N,
were obtained from separate cylinders. The bag was incubated at 37 °C for 20 h for the autoxidation, and 0.2 mL
cyclohexane was immediately added to the glass tube to obtain 0.16 mM peroxidized linoleic acid. The concen-
tration of conjugated diene was estimated by measuring the absorption at 234 nm while scanning from 200 to
300nm.

Autoxidation of pure PAPC in air in the absence or presence of H,.  Chemically synthesized pure
PAPC was purchased from Avanti Polar Lipids (Alabaster, AL, USA). PAPC was autoxidized in air as described
previously®®. Briefly, 0.5 mg of PAPC in 50 pL of chloroform was transferred to a $10 X 50 mm glass tube and
dried up under a gentle stream of nitrogen. The lipid residue was allowed to autoxidize in air with 100% humidity
at 25°C in the presence or absence of the indicated concentrations of H, gas in a closed aluminum bag for the
indicated periods, and then suspended in PBS at a concentration of 0.5 mg/mL.

Estimation of OXPAPC with Liperfluo. OxPAPC was assayed in ethanol with Liperfluo as described pre-
viously®. Five min after adding OxPAPC to 1 uM Liperfluo at room temperature, the fluorescence was measured
using a fluorescence spectrophotometer (RF-5300PC; Shimadzu Corporation, Kyoto, Japan), where wavelengths
of excitation and emission were set at 488 and 535 nm, respectively.

Measurement of Ca?* signaling. Intracellular Ca?* in THP-1 cells treated with OxPAPC was measured
using a Calcium Kit-Fluo 4 (CS22; Dojindo, Kumamoto, Japan) according to the manufacturer’s protocol. Briefly,
THP-1 cells were washed with PBS and incubated with 4.5 .M Fluo 4-AM in recording medium (20 mM HEPES,
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115mM NaCl, 5.4 mM KCl, 0.8 mM MgCl,, 1.8 mM CaCl,, 13.8 mM glucose) containing 0.064% pluronic F-127
and 1.25mM probenecid for 30 min at 37 °C. The cells were washed with PBS and resuspended in recording
medium containing 1.25mM probenecid. The cells were seeded on 35-mm glass-bottomed dishes and then stim-
ulated with 100 pg/mL OxPAPC or H,OxPAPC, followed by 25 .M ATP. The changes in Fluo 4-AM fluorescence
were monitored using a laser scanning confocal microscope (FV1200; Olympus Corporation, Tokyo, Japan). The
strength of each fluorescent signal in 400 cells was examined and judged as positive if there was greater than 30%
of the ATP signal.

Intracellular Ca?* of THP-1 cells treated with the free radical inducer AAPH? was measured by Fluo-3
(F-23915; Molecular Probes, Eugene, OR, USA). Briefly, THP-1 cells were pre-incubated with 2ppM Fluo 3-AM
in HBSS containing 0.02% pluronic F-127 for 30 min at 37 °C, resuspended in RPMI1640 (with 10% FBS) con-
taining 2.5 mM probenecid, seeded in 24-well plates, and then treated with AAPH in the presence or absence of
H,. Changes in Fluo-3 fluorescence signals were observed using a laser scanning confocal microscope (FV1200;
Olympus).

Mass spectrometric analysis and presentation of data using heat maps. OxPAPC (dissolved in
chloroform at 2.5 mg/mL) was analyzed using by electrospray ionization-mass spectrometry (ESI-MS) by using
an LTQ ORBITRAP XL mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a nitro-
gen sheath gas flow rate of 40 AU at 300 °C. The sample was directly infused. The scanning range was from m/z
250 to 1000 in the positive ion detection mode. The ion spray voltage was set to 4kV. OxPAPC species were identi-
fied according to their m/z values and confirmed using mass spectrometric analysis as described previously'*444,

Two independent experiments were performed. The average of the data was used for construction of a heat
map and displayed in mass spectrometric profiles. In the heat map, bands were arranged according to molecular
mass from small to large, and the strength of each band obtained from H,0xPAPC was compared with those by
OxPAPC. Red and green bands represented increased and decreased levels as compared with those of OxPAPC,
respectively. The mass spectrometric display indicates the average band from two experiments. Only when bands
were detected by all of 10 experiments (two experiments at 0%, 0.2%, 0.3%, 1.3% and 5% of H,), they were
adopted.

Comprehensive analysis of gene expression. THP-1 cells were exposed for 4h to PAPC or OxPAPC,
H,[1.3%]OxPAPC, and H,[5%]OxPAPC that had been autoxidized for 3 days with 0%, 1.3%, or 5% H,, respec-
tively. Total RNA was extracted using an RNeasy Mini Kit according to the manufacturer’s protocol (Qiagen,
Valencia, CA, USA) and labeled using a Low-Input QuickAmp Labeling Kit, One-Color (Agilent Technologies,
Santa Clara, CA, USA). Gene expression analysis was performed on samples from three independent experiments
using a microarray (SurePrint G3 Human GE 8 x 60 K v2 Microarray; Agilent Technologies). The raw microarray
data were deposited in the Gene Expression Omnibus (GEO; accession number, GSE62434; http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE62434). CREB target genes were selected according to the CREB Target Gene
Database (http://natural.salk.edu/CREB/), while NFAT target genes were selected by reference to Medline, as
listed in Supplementary Table 1. Signal transduction pathways associated with each gene were identified accord-
ing to the KEGG Pathway Database (http://www.genome.jp/kegg/pathway.html).

Quantitative real-time PCR. To quantify mRNA levels, quantitative real-time PCR was carried out using
TagMan Probe and Premix Ex Taq (Probe qPCR; TaKaRa Bio Inc., Shiga, Japan) in a TaKaRa PCR Thermal Cycler
Dice TP960 (TaKaRa Bio) according to the manufacturer’s protocols. To normalize mRNA expression levels,
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an endogenous internal control. Primers and
probes used for RT-PCR are described in Table 2.

ELISA (Enzyme-linked immuno-sorbent assay) HAEC and THP-1 cells were treated with PAPC, OxPAPC
or H,OxPAPC for 22 h. The IL-8 (HAEC) and TNF-a (THP-1) contents in the culture media were determined
using Human CXCL8/IL-8 Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA) and Human TNF-«
Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA), respectively, according to the manufacturer’s
protocol.

Detection of lipid peroxidation in cultured cells. THP-1 cells (1 x 10° cells/mL) were stained with 5pM
Liperfluo® for 30 min and then treated with 10mM of AAPH? for 4.5 in the absence or presence of the indi-
cated concentrations of H, gas in a closed vessel. The cells were analyzed using a Cell Lab Quanta flow cytometer
(Beckman Coulter, Miami, FL, USA).

Detection of the translocation of NFAT into the nucleus by immunofluorescence. THP-1 cells
(1 x 10° cells/mL) were treated with OxPAPC (0.1 mg/mL), or H,[2.5%]OxPAPC ( 0.1 mg/mL) for 1.5h, which
were used for the Ca>" signaling assay, and then the translocation of NFAT was determined using immunoflu-
orescence as follows. The cells were fixed for 20 min with 10% neutral buffered formalin (3.8% formaldehyde),
and then permeabilized with 0.2% Triton X-100 in Tris-buffered saline (TBS-T) for 10 min. After the cells were
washed, and blocked with 5% nonfat milk in TBS-T, they were incubated with anti-NFAT1 antibodies (1:100
dilution; 25A10.D6.D2; Abcam, Cambridge, MA, USA) overnight at 4 °C, followed by incubation with Alexa
Fluor 488-conjugated anti-mouse antibodies (1:400 dilution; A-11029; Life Technologies, Carlsbad, CA, USA) for
1hat 25°C. The cells were counterstained with Hoechst 33342. Immunofluorescence was observed using a laser
scanning confocal microscope (FV1200; Olympus).
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THP-1 cells (1 x 10° cells/mL) were treated with 10mM AAPH for 3h in the absence or presence of indi-
cated concentrations of H,, and the NFAT translocation was investigated using immunofluorescence as described
above.

Cell culture. THP-1 cells (ATCC) were cultured in RPMI1640 containing 10% FBS. Human aortic endothelial
cells (HAEC) were obtained from Lonza and maintained in endothelial cell growth medium [EBM medium +
growth supplements-+FCS (Lonza)]. Cells were cultured at 37°C in a 5% CO, humidified atmosphere and were
used for experiments from passage 4 to 8.

Statistical analysis. Statistical differences between groups were assessed by one-way analysis of variance
(ANOVA) with Tukey-Kramer post hoc analysis unless otherwise mentioned. Statistical analyses were performed
with IBM SPSS21 software. Results were considered significant at P < 0.05. When 0.01 < P < 0.05, the actual P
values were noted. Data are presented as means + standard deviations.
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Cisplatin is a highly effective anticancer drug for treatment of various tumors including non-small-cell
lung cancer (NSCLC), and is especially useful in cases nonresponsive to molecular-targeted drugs.
Accumulating evidence has shown that cisplatin activates the p53-dependent apoptotic pathway, but it
also induces apoptosis in p53-mutated cancer cells. Here we demonstrated that DNA-damage inducible
proapoptotic BH3 (Bcl-2 homology region 3)-only Bcl-2 family members, Noxa, Puma, Bim and Bid, are
not involved in cisplatin-induced apoptosis in human NSCLC cell lines. In contrast, the expression of
proapoptotic multidomain Bcl-2-family members, Bak and Bax, was induced by cisplatin in p53-
dependent and -independent manners, respectively. Moreover, in wild-type p53-expressing cells,
cisplatin mainly used the Bak-dependent apoptotic pathway, but this apoptotic pathway shifted to the
Bax-dependent pathway by loss-of-function of p53. Furthermore, both Bak- and Bax-induced apoptosis
was enhanced by the antiapoptotic Bcl-2 family member, Bcl-X; knockdown, but not by Mcl-1 knock-
down. From this result, we tested the effect of ABT-263 (Navitoclax), the specific inhibitor of Bcl-2 and
Bcl-Xy, but not Mcl-1, and found that ABT-263 synergistically enhanced cisplatin-induced apoptosis in
NSCLC cells in the presence or absence of p53. These results indicate a novel regulatory system in
cisplatin-induced NSCLC cell apoptosis, and a candidate efficient combination chemotherapy method
against lung cancers.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

(TKIs) [2,3]. However, the rate of EGFR positive mutation is about
20% and ALK rearrangement is only about 5—7% [4], and thus most

Lung cancer is a leading cause of cancer-related death world-
wide in both men and women, and more than 85% of cases are
classified as non-small-cell lung cancer (NSCLC), including adeno-
carcinoma, squamous cell carcinoma and large-cell carcinoma [1].
NSCLCs harboring epidermal growth factor receptor (EGFR) muta-
tions or anaplastic lymphoma kinase (ALK) gene rearrangements
have been successfully targeted with tyrosine kinase inhibitors

Abbreviations: NSCLC, non-small-cell lung cancer; CDDP, cisplatin [cis-
diamminedichloroplatinum (II)]; shRNA, short hairpin RNA; IP, immunoprecipita-
tion; IB, immunoblotting; WCL, whole cell lysate.

* Corresponding author.
E-mail address: nobuta@nms.ac.jp (N. Tanaka).

http://dx.doi.org/10.1016/j.bbrc.2016.03.053
0006-291X/© 2016 Elsevier Inc. All rights reserved.

NSCLC cases do not respond to these TKIs [1,5]. In such cases,
conventional chemotherapy using platinum-based compounds are
recommended [6,7]. Cisplatin is the first discovered and most
commonly used platinum-based compound [8]. In the cell, cisplatin
crosslinks purine bases in DNA, thereby evoking DNA damage re-
sponses. The anti-tumor effect of cisplatin is primarily caused by
DNA damage induced apoptosis [9]. The tumor suppressor p53
plays an essential role in DNA damage-induced apoptosis through
induction of a set of apoptosis inducers [10]. On the other hand,
another study showed that cisplatin also induced apoptosis in p53-
mutated NSCLC cells and other cancer cells [11]. Therefore, the
molecular mechanism underlying cisplatin-induced apoptosis in
NSCLC cells has not yet been fully elucidated.
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The Bcl-2 proteins are critical regulators of apoptosis. They
possess conserved BH (Bcl-2 homology) domains and are classified
into “multidomain” and “BH3-only” proteins. The pro-apoptotic
multidomain members Bax and Bak function as apoptosis exe-
cuters in the mitochondria. Studies on mice lacking both Bax and
Bak showed that Bax and Bak are essential inducers of
mitochondrion-mediated apoptosis in response to various stimuli,
including DNA damage [12,13]. In contrast, anti-apoptotic multi-
domain proteins, such as Bcl-2, Bcl-X; and Mcl-1, inhibit Bax/Bak-
mediated apoptosis. BH3-only proteins, which are critical for
initiating apoptosis, activate Bax and Bak through direct and/or
indirect activation [12,13]. The BH3-only proteins Bim, Bid, Puma
and Noxa directly activate Bax and Bak, and also inactivate anti-
apoptotic multidomain proteins [14]. Quadruple deficiency of
Bim, Bid, Puma and Noxa abrogates apoptosis induced by various
stimuli, suggesting the importance of these factors in triggering
Bax/Bak-mediated apoptosis induction [14]. In response to DNA
damage, the expression of Noxa/Puma and Bim is induced by p53
and FOXO03, respectively, resulting in induction of apoptosis
[15—18]. Another study also reported the possible role of Bid in the
DNA damage response [19].

Here we examined the mechanism of cisplatin-induced
apoptosis of NSCLC cells with the aim of helping develop new ap-
proaches for treatment of NSCLC.

2. Materials and methods
2.1. Cells, antibodies and materials

Human NSCLC cell lines A549, H460, LC2/Ad and PC10 were
purchased from the American Type Culture Collection (Manassas,
VA, USA). Antibodies were purchased from the following manu-
facturers: Bim (C34C5), Bcl-X; (54H6), cleaved PARP (D64E10) and
cleaved caspase-3 (5A1E) from Cell Signaling Technology (Danvers,
MA, USA); Noxa (114C307.1) from Thermo Fisher Scientific
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(Waltham, MA, USA); Mcl-1 (S-19) and Bax (N-20) from Santa Cruz
Biotechnology (CA, USA); alpha-tubulin (DM 1A) from Sigma-
—Aldrich (Tokyo, Japan); and Bak (06—536) from Millipore (Bill-
erica, MA, USA). Anti-Bak (ab-1; Calbiochem) and anti-Bax (6A7;
Sigma—Aldrich) antibodies were used for immunoprecipitation.
ABT-263 (Navitoclax) was purchased from AdooQ BioScience (Irvine,
CA, USA). Cisplatin was purchased from Calbiochem (San Diego, CA,
USA).

2.2. Immunoprecipitation and immunoblotting

Immunoprecipitation and immunoblotting analyses were per-
formed as previously described [20].

2.3. RNA interference

Short hairpin RNAs (shRNAs) shNoxa, shBim, shBid, shPuma,
shMcl-1 and shBcl-X; were cloned into the pSuper puro vector
(Oligoengine; Seattle, WA, USA). The target sequences were as
follows: 5'-GGAAACGGAAGATGGAATA-3' (shNoxa), 5'-
CTACCTCCCTACAGACAGA-3'  (shBim), 5-GGGATGAGTGCATCA-
CAAA-3' (shBid), 5-GGGTCCTGTACAATCTCAT-3’ (shPuma), 5'-
GCAAGAGGATTATGGCTAA-3'  (shMcl-1), and  5'-AGGATA-
CAGCTGGAGTCAG -3’ (shBcl-Xp). Retroviral infection was per-
formed as previously described [21]. The lentiviral sh-p53, sh-Bax
and sh-Bak-expressing constructs were kindly provided by Dr.
Harada (Virginia Commonwealth University, Richmond, VA, USA)
[22].

2.4. Quantitative real-time polymerase chain reaction (PCR)
analysis

Quantitative real-time PCR (qPCR) analysis was performed as
previously described [21]. The primer and probe sets used were
predesigned primer/probe sets: (-actin, Hs03023880_g1; Bak,
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Fig. 1. Effect of Noxa, PUMA, Bim or Bid knockdown on cisplatin (CDDP)-induced apoptosis of NSCLC cells. (A, B) A549 and H460 cells stably expressing sh-Noxa or sh-control were
treated with cisplatin (20 pM) for 24 h and analyzed by immunoblot analysis using indicated antibodies (A) and by cell viability assay (B). Results are expressed as the mean + SEM
of at least three independent experiments. P values are relative to the control. *P < 0.05; **P < 0.01. (C, D) A549 and H460 cells stably expressing shRNA targeting Bid (sh-Bid) or sh-
Bim were subjected to immunoblot analysis using the indicated antibodies (left panel; C). A549 and H460 cells stably expressing sh-Puma or sh-control were treated with cisplatin
(20 uM) for 24 h and the expression of Puma was analyzed by qPCR (right panel; C). Data are mean + SD (n = 3). Cell viability was measured by trypan blue exclusion analysis (D).
Results are expressed as the mean + SEM of at least three independent experiments. P values are relative to the control. *P < 0.05; **P < 0.01.
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Hs00832876_gl; Bax, Hs00180269_ml; and Puma,
Hs00248075_m1. The mRNA expression levels were normalized to
those of (-actin levels.

2.5. Cell death assay

NSCLC cell lines were plated in microtiter plates (12 wells,
Greiner Bio-one, Frickenhausen, Germany) at a concentration of
1 x 10° cells per well in 500 pl medium and treated with 20 M
cisplatin in the presence or absence of 1 uM ABT-263 for 48 h or
72 h. After treatment, cell viability was measured by the trypan
blue dye exclusion method using a VI-Cell image analyzer (Beck-
man Coulter, Brea, CA, USA). The ICsp value for cisplatin was deter-
mined as previously described [20]. The significance of differences
between the experimental variables was determined using Stu-
dent's t-test.

3. Results

3.1. Noxa, PUMA, Bim and Bid do not contribute to cisplatin-
induced apoptosis in NSCLC cells

Since a previous study demonstrated that cisplatin induces
Noxa-dependent apoptosis in HeLa cells [23], we first analyzed the
role of Noxa in cisplatin-induced apoptosis of NSCLC cells. The
NSCLC cell lines A549 and H460, which express wild-type p53,

M. Matsumoto et al. / Biochemical and Biophysical Research Communications 473 (2016) 490—496

were treated with 20 pM cisplatin (ICso was determined as 12 pM
and 8 puM, respectively) solved in water to prevent solvent-
mediated inactivation [24]. As shown in Fig. 1A, cisplatin induced
the expression of Noxa and also the activation of caspase-3, an
apoptosis executer. In contrast, shRNA-mediated silencing of Noxa
expression did not affect the induction of cleaved caspase-3, a
hallmark of caspase-3 activation, and induction of apoptosis (Fig. 1A
and B). Silencing of other BH3-only proteins important for trig-
gering apoptosis, Bim, Bid or PUMA, also did not affect cisplatin-
induced apoptosis (Fig. 1C and D). Because the expression level of
PUMA protein was detected at low levels by immunoblot, we
detected the expression of PUMA by qPCR (Fig. 1C, right).

3.2. Cisplatin enhances p53-dependent Bak- and p53-independent
Bax-expression

To better examine the mechanism underlying apoptosis induc-
tion, we next analyzed the expression of proapoptotic multidomain
Bcl-2 family proteins Bax and Bak in response to cisplatin treat-
ment, as a previous study demonstrated that the expression of Bax
and Bak is directly regulated by p53 [10,25]. As shown in Fig. 2A and
B, the protein and mRNA levels of Bax and Bak were induced by
cisplatin. Interestingly, while induction of Bak protein and mRNA by
cisplatin was clearly suppressed by silencing of p53 expression, the
induction of Bax was not affected, but caspase-3 activation and
cleavage of PARP, other hallmarks of apoptosis, were significantly
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Fig. 2. Role of p53 in the activation of Bax and Bak in cisplatin-treated NSCLC cells. (A, B) A549 and H460 cells were treated with cisplatin (20 pM) for the indicated times and
analyzed by immunoblot analysis using indicated antibodies (A), and Bax and Bak mRNA levels were determined by qPCR. Data are mean + SD (n = 3). (C, D, E) A549 and H460 cells
stably expressing sh-p53 or sh-control were treated with cisplatin (20 uM) for the indicated times, and analyzed by immunoblot analysis using the indicated antibodies (C), and Bax
or Bak mRNA were determined by qPCR (D). Data are mean + SD (n = 3). Cell viability was measured (E). Results are expressed as the mean + SEM of at least three independent
experiments. Student's t-test was used for statistical analysis. P values are relative to the control. *P < 0.05; **P < 0.01.
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suppressed by silencing p53 (Fig. 2C and D). Induction of apoptosis
was also suppressed by shRNA-mediated silencing of p53 expres-
sion (Fig. 2E).

3.3. Induction of apoptosis by cisplatin in NSCLC cells lacking p53
function was suppressed by reduced Bax expression

In A549 cells expressing p53 shRNA, the cisplatin-induced
activation of Bak (detected by antibodies specific to the activated
form of Bak) was suppressed; in contrast, the activation of Bax was
still observed (Fig. 3A). Therefore, we next analyzed whether
apoptosis induction by cisplatin was also dependent on Bax in-
duction. As shown in Fig. 3B and C, apoptosis induction by cisplatin
in A549 cells expressing both p53 shRNA and Bax shRNA was
significantly suppressed compared with only p53 shRNA-
expressing cells. As expected, in the p53-mutant NSCLC cell lines
LC2/Ad and PC10, cisplatin treatment resulted in the induction of
Bax but not Bak (Fig. 3D). The expression and induction of Noxa
were also suppressed in these cells. Furthermore, cisplatin-induced
apoptosis in LC2/Ad cells was suppressed by silencing of Bax but not
Bak expression (Fig. 3E).

3.4. Cisplatin-induced apoptosis in NSCLC cells was not affected by
reduced expression of Mcl-1 and enhanced by ABT-263

Antiapoptotic multidomain Bcl-2 family proteins, such as Mcl-1
and Bcl-X|, inhibit apoptosis through direct association with Bax
and Bak [12]. As shown in Fig. 4A and B, cisplatin-induced apoptosis
in NSCLC cells was enhanced by silencing of Bcl-X; expression.

493

Although it has been demonstrated that survival of several cancer
cell lines completely depend on Mcl-1 [26,27], apoptosis was not
affected by silencing of Mcl-1 expression (Fig. 4A and B). BH3-only
proteins associate with antiapoptotic multidomain Bcl-2 family
proteins via their BH3-domain, resulting in induction of apoptosis
[12,13]. Recently, BH3 mimetics have been used for cancer
chemotherapy and ABT-263 has proved promising in clinical trials
[28,29]. Because ABT-263 is a specific inhibitor of Bcl-2 and Bcl-X,
but not Mcl-1, we next analyzed the effect of ABT-263 on cisplatin-
induced apoptosis. ABT-263 enhanced the cisplatin-induced acti-
vation of Bax, Bak, and caspase-3 in A549 cells (Fig. 4C). In contrast,
in A549 cells expressing p53 shRNA, cisplatin-induced activation of
Bax and Bak was suppressed; however, ABT-263 clearly enhanced
the activation of Bax and caspase-3 (Fig. 4C). In correlation with
these effects, ABT-263 enhanced apoptosis in A549 cells as well as
A549 cells expressing p53 shRNA, especially at early time points
(Fig. 4D). Moreover, cisplatin and ABT-263 synergistically enhanced
the activation of Bax and caspase-3 and the induction of apoptosis
in p53 mutated LC2/Ad and PC10 cells (Fig. 4E and F).

4. Discussion

In the apoptosis regulatory pathways mediated by the Bcl-2
family proteins, induction and/or activation of BH3-only proteins
in response to apoptosis-inducing signals result in activation of
pro-apoptotic multidomain Bcl-2 families Bax and Bak through
direct association and inhibition of anti-apoptotic multidomain Bcl-
2 families [12,13]. In this triparticle apoptotic switch, BH3-only
proteins function as an initial triggering factor. The importance of
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Fig. 3. Bax and Bak activation in cisplatin-treated NSCLC cells lacking p53 function. (A) A549 and H460 cells stably expressing sh-p53 or sh-control were treated with cisplatin
(20 uM) for 12 h and analyzed by immunoprecipitation (IP) with conformational change-specific anti-Bak (Ab-1) or conformational change-specific anti-Bax (6A7) antibodies.
Immunoblot analyses were carried out on precipitated samples with indicated antibodies (upper panel). The asterisk indicates a nonspecific band. Whole cell lysates (WCLs) were
subjected to immunoblot analysis with the indicated antibodies (lower panel). (B, C) A549 and H460 cells stably expressing sh-p53 or sh-control were further infected with
lentivirus encoding sh-Bax or sh-control and analyzed by immunoblot analysis using indicated antibodies (B). Cells were treated with cisplatin (20 uM) for 24 h and cell viability was
measured (C). Results are expressed as the mean + SEM of at least three independent experiments. P values are relative to the control. *P < 0.05; **P < 0.01. (D) LC2/Ad and PC10 cells
were treated with cisplatin (20 uM) for the indicated times, and analyzed by immunoblot analysis using indicated antibodies. (E) LC2/Ad and PC10 cells stably expressing sh-Bak, sh-
Bax or sh-control were subjected to immunoblot analysis using the indicated antibodies (left panel). The cells were treated with cisplatin (20 pM) for 24 h, and cell viability was
measured (right panel). Results are expressed as the mean + SEM of at least three independent experiments. P values are relative to the control. **P < 0.01.
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Fig. 4. Effect of ABT-263 on cisplatin-treated p53 mutant NSCLC cells. (A, B) A549 and H460 cells expressing sh-Bcl-X;, sh-Mcl-1 or sh-control were subjected to immunoblot
analysis using the indicated antibodies (left panel). Cells were treated with cisplatin (20 uM) for 24 h and cell viability was measured (B). Results are expressed as the mean + SEM of
at least three independent experiments. P values are relative to the control. *P < 0.05; **P < 0.01. (C) A549 cells expressing sh-p53 or sh-control were treated with cisplatin (20 pM)
for 12 h, and the active forms of Bax and Bak were detected as described in Fig. 3A (upper panel). WCLs were subjected to immunoblot analysis with the indicated antibodies (under
panel). (D) LC2/Ad and PC10 cells were treated with cisplatin (20 pM) in the presence or absence of ABT-263 (1 uM) for 12 h and the active forms of Bax and Bak were detected
(upper panel). The asterisk indicates a nonspecific band. WCLs were subjected to immunoblot analysis with the indicated antibodies (lower panel). (E) A549 cells stably expressing
sh-p53 or sh-control and LC2/Ad or PC10 cells were treated with cisplatin (20 pM) in the presence or absence of ABT-263 (1 uM) for 12 h and cell viability was measured. Results are
expressed as the mean + SEM of at least three independent experiments. P values are relative to the control. *P < 0.05; **P < 0.01.

BH3-only proteins, especially Bim, Bid, Puma and Noxa, was pre-
viously demonstrated by the results showing that quadruple defi-
cient cells show almost the same phenotype as Bax and Bak double-
deficient cells [14]. However, our present study indicates that the
BH3-only proteins do not regulate cisplatin-induced apoptosis in
NSCLC cells. In our system, only Noxa was induced by cisplatin, but
silencing of Noxa expression and also silencing of Bim, Bid or Puma
expression could not affect cisplatin-induced apoptosis. In contrast,
we determined that cisplatin induces p53-dependent Bak expres-
sion and also p53-independent Bax expression. Moreover, in p53

wild-type cells, cisplatin-induced apoptosis is affected by reduced
Bak expression, and in p53 lacking or mutated cells, cisplatin-
induced apoptosis is affected by reduced Bax expression. There-
fore, although we cannot exclude the possibility that another BH3-
only protein regulates this apoptosis or that the other BH3-only
proteins compensate for the effect of silencing of single BH3-only
protein, our results suggest that Bak- and Bax-induction by
cisplatin is important for the induction of apoptosis in NSCLC cells.

MCL-1 is one of the most highly amplified genes in a variety of
human cancers, and its expression is often associated with
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resistance of chemotherapy and relapse of cancer [30]. Moreover,
other studies showed that survival of several cancer cell lines
completely depend on Mcl-1 [26,27]. These findings suggest that
Mcl-1 is an important factor for cancer cell survival and tumor
expansion. However, NSCLC cell lines used in these experiments
could not show a protective effect not only in cell survival but also
in cisplatin-induced apoptosis. Moreover, the expression of Noxa, a
specific inhibitor of Mcl-1, was efficiently induced by cisplatin, but
inhibition of the Noxa expression could not affect cisplatin-induced
apoptosis, suggesting that the Noxa-Mcl-1 pathway could not
effectively regulate cell survival and death in NSCLC. Although Noxa
inhibits Mcl-1 by ubiquitin-mediated degradation [31], other
studies showed that Noxa, also called APR, is overexpressed in
several cancer cell lines [20,32]. Therefore, it is possible that Noxa
does not inhibit Mcl-1 through a specific protein modification or
expression of other cofactor(s), and also that Mcl-1 cannot function
under some conditions.

In several cancers, it has been reported that p53 status is an
important determinant of cisplatin sensitivity; however, some
studies suggest that cisplatin-induced cell death is independent of
p53 status [33,34]. Other studies showed that the absence of p53
does not alter cellular sensitivity to cisplatin [11,34], but the precise
mechanism has not been fully elucidated. In the present study, we
demonstrate that cisplatin induces apoptosis by the activation of
both p53-dependent Bak and p53-independent Bax expression,
and inhibition of Bax expression attenuates cisplatin-induced
apoptosis in p53 lacking or mutated cells. These results indicate
that the induction of Bax is involved in p53-independent apoptosis
by cisplatin. A previous study showed that p53 can directly activate
the Bak promoter [25]. The mechanism of p53-independent Bax
induction has not been fully elucidated. However, a previous study
showed that p73, a p53-related transcription factor, activates the
Bax promoter [35], suggesting its possible role in p53-independent
Bax induction.

BH3 mimetics, such as ABT-263, are expected to contribute as
efficient cancer therapy, but they could not antagonize Mcl-1
[28,29]. In small cell lung cancer, it has been shown that ABT-263
enhances the induction of apoptosis by the HDAC inhibitor, vor-
inostat [36]. In contrast to its importance in cancer, we observed
that Mcl-1 could not affect in cisplatin-induced apoptosis in several
NSCLC cell lines. Moreover, ABT-263 synergistically enhances
cisplatin-induced apoptosis in these cells, even in mutant p53-
expressing cells. These results suggest the possibility that ABT-
263 is an efficient therapeutic agent for NSCLC.
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HIGHLIGHTS

« Social isolation in sexually naive male mice promoted the onset of maternal behavior.
« Social isolation during either adolescence or young adulthood was effective.
« Partial isolation (exposure to conspecific signals) was not effective.
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Maternal behavior in mice is considered to be sexually dimorphic; that is, females show maternal care for their
offspring, whereas this behavior is rarely shown in males. Here, we examined how social isolation affects the in-
teraction of adult male mice with pups. Three weeks of isolation during puberty (5-8 weeks old) induced retriev-
ing and crouching when exposed to pups, while males with 1 week isolation (7-8 weeks old) also showed such
maternal care, but were less responsive to pups. We also examined the effect of isolation during young adulthood
(8-11 weeks old), and found an induction of maternal behavior comparable to that in younger male mice. This
effect was blocked by exposure to chemosensory and auditory social signals derived from males in an attached
compartment separated by doubled opaque barriers. These results demonstrate that social isolation in both pu-

Keywords:
Maternal behavior
Social isolation

Chemosensory berty and postpuberty facilitates male maternal behavior in sexually naive mice. The results also indicate that air-
ddN male mice borne chemicals and/or sounds of male conspecifics, including ultrasonic vocalization and noise by their move-
Puberty ment may be sufficient to interfere with the isolation effect on induction of maternal behavior in male mice.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction naive males rarely show maternal behavior. When these males encoun-

ter pups, they sometimes engage in infanticide [4,5]. However, the ex-

Maternal care is an indispensable aspect of mammalian reproduc-
tion, as offspring are fed by lactation. In rodents, parturient females
build a nest as preparation for pups after delivery. After delivery, fe-
males immediately retrieve pups to the nest, licking around their
anogenital area and crouching over them. In contrast, virgin females
are less interested in pups and maternal care. However, such females
may become maternal, provided they are exposed to pups for a few
days (so-called priming) [1-3]. In contrast, maternal care is not sponta-
neous in most male rodents [3]. In laboratory mouse strains, sexually

* Corresponding author at: Institute for Advanced Medical Science, Nippon Medical
School, Kosugi, Nakahara, Kanagawa 211-8533, Japan.
E-mail address: orikasa@nms.ac.jp (C. Orikasa).

http://dx.doi.org/10.1016/j.physbeh.2015.07.007
0031-9384/© 2015 Elsevier Inc. All rights reserved.

perience of mating followed by cohabitation with gestating females
has been reported to suppress infanticide and provoke males to show
maternal behavior similar to lactating mothers [6,7]. This indicates
that functional neural circuits regulating maternal-specific behaviors
exist in the normal male mouse brain, but might not be activated in sex-
ually naive mice.

Social isolation exerts a variety of influences on a wide range of
physiology and behaviors. In male mice, it induces inter-male aggres-
sion [8] and augmented emotionality [9]. In female mice, pubertal isola-
tion disrupts sexual behavior despite the increased expression of
estrogen receptors observed in the anteroventral periventricular nucle-
us and the ventromedial nucleus of the hypothalamus after pubertal
isolation [10]. Social isolation can be a stressful event in mice and rats
[11,12]. The effect of social stress during puberty can cause long-
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lasting alterations in the brain and subsequently in adult behaviors.
Therefore in this experiment, we examined the effect of social isolation
starting at 5 weeks of age, when mice are just beginning to enter puberty.
Interestingly, previous research has demonstrated that social isolation in
adult mice can elevate play behavior [3] and parenting behavior in male
mice [13]. Although typically 70-80% of adult male mice will attack a
newborn pup [14], male mice showed decreased infanticide after
isolation [13].

In this study, we examined whether lack of social signals during ad-
olescence increases maternal behavior in sexually naive male mice as
well as during young adulthood. Pheromone signals may be involved
in these physiological and behavioral responses [15-18]; therefore, we
also examined the effect of modified social isolation that allowed male
mice to smell and hear adjacent male conspecifics, but not to see or
touch them.

2. Materials and methods
2.1. Animals

Two pairs of inbred strain ddN mice were purchased from the RIKEN
Bio-Resource center (Wako, Japan) and bred in our laboratory. All male
offspring were separated from female litter mates at weaning (21 days
old) and kept in groups of three to five male siblings until the start of
isolation. Mice were housed in 19 x 27 x 15 cm polypropylene cages
with wood chip bedding. Throughout all experiments, mice were
housed in our animal facility under controlled illumination (lights on
from 6 a.m. to 8 p.m.), temperature (23 °C) and humidity (50.0 +
10%). Food and water were given ad libitum.

2.2. Ethics statement

Experiments and animal housing adhered to the guidelines for the
Care and Use of Laboratory Animals of Nippon Medical School, adopting
NIH (National Institutes of Health) guidelines for the care and use of ex-
perimental animals. All procedures were approved by the Committee
for Experimental Animal Ethics in Nippon Medical School.

2.3. Maternal behavior test

Each experimental male was placed in a clean cage with fresh bed-
ding 2 days before testing. All behavioral tests were carried out during
the day, 5-8 h after lights were turned on [19]. On each day of testing,
cages containing experimental males were moved from shelves in the
animal room to the observation setting, and acclimated there for
10 min. To test group-housed males' maternal behavior, each male

Birth Weaning
Exprimental Groups o 1 2 3

4
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was moved to a separate cage containing a mixture of fresh and soiled
home-cage bedding 10 min before testing. We then followed a standard
pup presentation paradigm [20] to obtain a measure of maternal behav-
ior in virgin males. The observation began by placing three pups aged
4-7 days in the opposite corner farthest from the male or the corner
occupied by the mouse's resting nest.

We recorded the distance between the males and the pups, and
defined “close” as staying in close proximity (<1 cm) of pups and “far”
as staying further away than 1 cm [21]. Maternal behavior was assessed
over 10 min by recording retrieval (picking up a pup with its mouth and
carrying it to the nest) and crouching (extending its limbs, assuming a
nursing-like posture over the pups). Retrieval latencies, and time
spent licking and crouching over the pups were recorded. In retrieval,
the number of pups that they picked up was also recorded. For
crouching, we recorded the number of pups they lay on top of.

We categorized males as “Maternal” when they displayed at least
one of the above responses within 10 min, “Attack” if they attacked
the pups (biting a pup, often accompanied by actual wounds on the
pup), and “Ignore” when they showed no response to the pups. If a
male appeared about to attack a pup, the pups were quickly removed
and observation was terminated. Pups that had been attacked were
not used in subsequent tests and experiments. Behavioral data of
males that attacked pups were excluded from analysis of maternal
behavior.

2.3.1. Experiment 1

Each male was assigned to one of three experimental groups during
puberty. Mice were housed in isolation in two groups; one for 3 weeks
beginning at age 5 weeks (P31, n = 40), and one for 1 week beginning at
age 7 weeks (P1I, n = 11). The third group (PG, n = 15) was continu-
ously group-housed with siblings separated from female litter mates
at weaning (Fig. 1). Each experimental group was made up of litter-
mates. The sexually naive P3I males at 5 weeks old and P11 males at
7 weeks old were displaced to cages and housed singly for 3 weeks or
1 week, respectively, prior to behavioral tests at 8 weeks of age. PG
males remained in cages with siblings, and just before behavioral test-
ing were displaced to cages alone for behavioral observation. All males
were tested for maternal behavior at 8 weeks after the procedure
described above.

2.3.2. Experiment 2

In Experiment 2, we examined the effect of modified social housing
on the induction of maternal behavior by previous social isolation dur-
ing adulthood. Sexually naive male mice were assigned into three
groups: isolation for 3 weeks (A3I: from 8 to 11 weeks old, n = 30),
group-housing with barriers (A3G’: from 8 to 11 weeks old, n = 10)

5 6 7 8 9 10 11 12

(weeks old)

— P3l

Experiment 1 - P1|

L PG [

— A3l ‘

Experiment2 — AG [

— A3G&’ [

[ Group-housing [ Isolation

I Behavior tests

I Group-housing with barrier

Fig. 1. Schematic representation of isolation and behavioral test schedules in each group.
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or group-housing without barriers (AG: from 8 to 11 weeks old, n = 13)
(see Fig. 1). In restrained social-housing (A3G’), a pair of litter mates
was kept in the same cage (49 x 28.5 x 29 cm), but separated by a bar-
rier made of two interstitial opaque acrylic boards containing six holes
(2-cm diameter) at different levels. This barrier prevented physical, vi-
sual and involatile chemical interactions, but allowed airborne odors,
audible and ultrasonic sounds (voice and noise) to pass through. The
floors of both chambers were covered with wood chips, and food and
water were freely available. Each pair was placed in this apparatus for
3 weeks (from 8 to 11 weeks old), which matched the isolation time
of the A3I group. All mice were tested for maternal behaviors when
they were 11 weeks old (Fig. 1).

2.4. Statistics

We used the Chi-squared test with Bonferroni post hoc tests to ex-
amine significant differences in incidences of the categories, maternal
behaviors, and attacks toward pups. The duration of each behavior
was analyzed by one-way analysis of variance (ANOVA), followed by
Bonferroni post hoc tests to determine the significant differences
among groups. The nonparametric Mann-Whitney U-test was applied
for analysis of latencies, as a maximal latency (observation time) was al-
lotted for mice that did not respond to the pups. All scoring was done
blindly by two observers, and we checked for coherence between the
parametric factors using Pearson's correlation (licking duration, r =
0.908***; time spent close to pups, r = 0.986*** of pubertal mice, r =
0.994*** of young adults; crouching duration, r = 0.993*** of pubertal
mice, r = 0.990 of young adults), and the nonparametric using
Spearman's correlation (latency to pup retrieval, r = 0.996"** of one
pup, r = 0.964*** of three pups, ***p <.001).

3. Results
3.1. Experiment 1

Table 1 shows the number and percentage of males in each response
category (see Materials and methods: Maternal behavior test). A signif-
icantly larger number of singly-housed male mice (P3I and P11 groups)
displayed maternal behavior than PG mice did (X?> = 23.32,df = 2,p<
.001). Most group-housed males showed indifference toward pups. A
significantly higher percentage of mice showed ‘Ignore’ in the PG
group than in the P31 or P11 groups (X? = 33.97, df = 2, p <.001). No
significant difference was found among groups in the number of
attacked pups (X? = 2.62, df = 2, p = .270).

Isolated males from the P3I and P11 groups spent significantly more
time in the vicinity of pups than did PG males (F,64 = 10.19, p <.001,
Bonferroni post hoc analysis, P3I: p <.001; P11: p <.05) (Fig. 2).

Retrieval in each group was analyzed in terms of the number of
retrieved pups: all pups, some pups, or no pups (Fig. 3A). Although
the number of males that retrieved some pups was significantly higher
in the P11 group than in the PG group (X? = 10.75, df = 2, p <.05), the
number of males that retrieved all three pups was significantly higher in
the P31 group than in the PG group (X?> = 13.28, df = 2, p < .05).
Additionally, latency of retrieval in P31 males was significantly shorter

Table 1
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Fig. 2. Time spent being close to pups. Duration of time spent in close proximity (<1 cm) to
pups was significantly longer in mice after social isolation for 3 weeks (P3I) or for 1 week
(P11) than in mice that were group-housed (PG). **p <.001, *p < .05, one-way ANOVA with
Bonferroni post hoc analysis.

than that in PG males (Fig. 3B, one pup; all pups: p <.05). No significant
difference in retrieval latency was observed between P11 and PG males
(one pup: p = .428; all pups: p = .643), or between P31 and P11l males
(one pup: p = .215; all pups: p = .356).

Fig. 4 shows data for time spent licking and crouching. While licking
duration did not differ across groups (Fig. 4A: F» 50 = 1.02, p = .38),
crouching duration was significantly longer in the P31 group than in
the PG group (Fig. 4B: F, ¢4 = 7.98, p < .05, Bonferroni post hoc analysis,
PG: p <.05). There was no significant difference in crouching duration
between males in the P1I group compared with the other groups
(Bonferroni post hoc analysis, P3I: p = .356; PG: p = .380). Crouching
behavior in each group was analyzed in terms of the number of pups
over which they crouched: all pups, some pups, or none (Fig. 4C). Al-
though the number of males that crouched some pups was significantly
higher in the P31 and P11 groups than in the PG group (X = 9.90, df = 2,
p <.05), the number of males that crouched all pups was significantly
higher in the P3I group than in the PG group (X = 8.42, df = 2,
p <.05) (Fig. 4C).

3.2. Experiment 2

Table 1 includes the number and percentage of males in each re-
sponse category for Experiment 2. Only A3l showed a significantly
higher proportion of males displaying maternal behavior (X? = 31.15,
df =2, p<.001). The number of mice in the ‘Ignore’ category was higher
in both the AG and A3G’ groups than in the A3l group (X2 = 22.90, df =
2, p <.001), regardless of whether they were separated by a barrier. No
significant difference was found among groups in the number of
attacked pups (X? = .73, df = 2, p = .70).

Number and percentage of males in each response category in Experiment 1 and Experiment 2.

Category Experiment 1 Experiment 2

P31 (40) P1I(11) PG (15) A31(30) AG (13) A3G’ (10)

Number % Number % Number % Number % Number % Number %
Maternal 27 67.5* 7 63.6** 0 0.0 22 73.3** 0 0.0 0 0.0
Ignored 7 17.5* 3 27.3** 15 100.0 5 16.7** 11 84.6 8 80.0
Attacked 6 15.0 1 9.1 0 0 3 10.0 2 15.4 2 20.0

Tests were interrupted when attacks occurred in order to avoid infanticide. Thus, males in the “Attack” category were excluded from further analyses. **p <.001, Chi-square test with

Bonferroni post hoc analysis, different from group-housed males.
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Fig. 3. Effect of social isolation on retrieving behavior. (A) Incidence of retrieval behavior in each group (carried all pups, some pups, or no pups). (B) Retrieval behavior was assessed by
recording the latency to pup collection. Median times required to collect one pup (left panel), all pups (right panel) are shown for each group, *p < .05, Mann-Whitney U-test.

Three week isolation after maturation also increased several male-
pup interaction parameters. A3l males spent significantly more time in
the vicinity of pups than did AG and A3G’ males (Fy45 = 19.68,
p <.001, Bonferroni post hoc analysis, AG; A3G’: p <.001) (Fig. 5A). Ap-
proximately 73% of the A3I group retrieved pups, whereas few did so in
the AG and A3G’ groups (Fig. 5B); this difference in incidence of retriev-
ing all pups was significant (Fig. 5B: X ? = 17.57,df = 2, p <.001). There
was no significant difference between groups in incidence of retrieving
some pups (X?> = 6.18, df = 2, p = .045). Crouching duration for A3l
males was also significantly longer than that for the AG or A3G’ groups
(Fig. 6A: Fo45 = 14.86, p < .001, Bonferroni post hoc analysis, AG:
p <.001; A3G’: p < .05), as was the number of all pups that they
crouched over (Fig. 6B: X 2 = 16.04, df = 2, p <.001).

4. Discussion

The results of this study show that social isolation induced maternal
behavior in male mice within 10 min, whereas group-housing did not.
There is a large volume of literature demonstrating that social isolation
usually results in various behavioral changes, such as depression-like
behavior [22], enhanced aggressiveness [23], and higher levels of
impulsivity [24]. It therefore seems paradoxical, at least outwardly,

that social isolation enhances intermale aggression but reduces attacks
on pups. These behaviors might be regulated by distinct neural circuits
because of different biological signification in social behavior. One
report found that social isolation during adolescence enhanced play
and contact behaviors [25]. Our current results are also a case of isola-
tion reinforcing sociality. Thus, the influence of social isolation may
show a wide diversity depending on social context and behaviors
examined.

Time spent with pups was significantly longer in mice that had been
isolated for 3 weeks or for 1 week than in those that had been group
housed. This resulted from the extended time they spent contacting
and crouching over the pups. Three weeks of isolation also shortened
the latency of pup retrieval, but did not affect time spent licking. This
might be because the cues that trigger licking are different from those
for other components of maternal behavior. First contact with pups
and pup-licking have been suggested to be influenced by emotional
arousal or anxiety in mice [26,27]. Thus, neural substrates underlying
licking may be different from those underlying retrieval and crouching
behavior. Although galanin neurons in the preoptic area (POA) have
been reported to play an important role in male mouse maternal behav-
ior, optogenetic activation of galanin neurons induced pup grooming
but failed to increase crouching behavior in male mice [28].
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Fig. 4. Effect of social isolation on pup licking and crouching behavior. (A) Mean duration (s) that pups were licked in each group. Time spent licking pups was not significantly different
across groups. (B) Mean duration (s) of crouching behavior (feeding posture) for each group. Males in the P31 group crouched longer than those in the PG group, *p <.05, one-way ANOVA
with Bonferroni post hoc analysis. (C) Incidence of crouching behavior in each group (over all pups, some pups, or no pups).

Although both P31 and P11 males were categorized as ‘Maternal’, the them, while most P11 males retrieved only one or two pups (Fig. 4).
quality of maternal behavior was very different between them. A very Thus, it seems that 3 weeks of isolation can induce robust maternal be-
high percentage of P31 males retrieved all pups and crouched over havior, while 1 week of isolation is effective at slightly increasing
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Fig. 5. Effects of social isolation after maturation on maternal behavior in male mice. (A) Mean duration (s) of time spent in the vicinity of pups was significantly longer in male mice after
social isolation for 3 weeks (A3I) than group-housing males with barriers (A3G’) or without barriers (AG). **p <.001, one-way ANOVA with Bonferroni post hoc analysis. (B) Incidence of
retrieval behavior in each group (carried all pups, some pups, or no pups).
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Fig. 6. Effect of social isolation after maturation on crouching behavior. (A) Crouching duration (s). A3I males spent more time crouching over pups than did group-housed male mice with
or without barriers. **p <.001, *p < .05, one-way ANOVA with Bonferroni post hoc analysis. (B) Incidence of crouching behavior in each group (over all pups, some pups, or no pups).

maternal behavior but not to a sufficient level. We also examined the ef-
fect of isolation at different developmental stages, demonstrating that
social isolation was not only effective in puberty (5-8 weeks old), but
also post-puberty (8-11 weeks old). Therefore, the effect of social isola-
tion on maternal care does not depend on hormonal conditions specific
to puberty, but rather depends on neural and/or humoral conditions
produced by the isolation. However, Ghiraldi and Svare [13] reported
that long isolation from weaning to adult age failed to suppress attack
of pups. Presumably, isolation for too long during development may dis-
rupt socialization instead of inducing maternal behavior.

In non-monogamous rodents, maternal behavior is generally female
specific (i.e. sexually dimorphic). In most strains of laboratory mice,
males show indifference or attacking in response to pups [14]. Indeed,
sexually naive male laboratory mice rarely show maternal care, and
sometimes commit infanticide [6]. Perinatal sex steroids masculinize
the mouse brain, resulting in suppression of maternal behavior and
facilitation of pup attack [29]. Sex steroids during the critical period of
brain sex differentiation may produce inhibitory substrates for maternal
behavior in male mice. However, a system that activates an inactive
system of maternal behavior in the male mouse brain could be ‘turned
off’ by social isolation, like a sensitization to pups for male rats [30,31].

What is the factor that activates maternal behavior in the male mouse
brain through social isolation? In this study, we examined the effect of
restricted social stimuli (A3G’) on maternal behavior, i.e., cohabiters
were separated by double opaque barriers that prevented direct contact
and visual cues but were permeable to airborne chemical and auditory
signals. In most mammalian species, chemosensory signals derived
from conspecifics may be the most important social stimulus. A lack of
these chemosensory signals could hence be responsible for the isolation
effect.

In male mice, copulation and subsequent cohabitation with a preg-
nant female lead to a transition in behavior from attacking (infanticide)
to parenting [6,7]. The current study demonstrates that not only cohab-
itation but social isolation can cause male mice to be maternal. Current-
ly, we do not have enough data to reveal whether these phenomena
share the same neural substrates. It is noteworthy that the brain regions
activated by pup exposure [6] are also activated during infanticide [7,
32]. This might imply that the same or overlapped neural mechanisms
underlie maternal responsiveness that appears after different social ex-
periences. Future investigation into these drastic effects of social experi-
ence will be important to fully understand the neural circuitry
controlling maternal behaviors.
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